• 解决mysqldb查询大量数据导致内存使用过高的问题


    1.源代码
    connection=MySQLdb.connect(
        host="thehost",user="theuser",
        passwd="thepassword",db="thedb")
    cursor=connection.cursor()
    cursor.execute(query)
    for row in cursor.fetchall():
        print(row)
    2.问题
    普通的操作无论是fetchall()还是fetchone()都是先将数据载入到本地再进行计算,大量的数据会导致内存资源消耗光。解决办法是使用SSCurosr光标来处理。


    3.优化后的代码  
    import MySQLdb.cursors
    connection=MySQLdb.connect(
        host="thehost",user="theuser",
        passwd="thepassword",db="thedb",
        cursorclass = MySQLdb.cursors.SSCursor)
    cursor=connection.cursor()
    cursor.execute(query)
    for row in cursor:
        print(row)

    参考文档:http://mysql-python.sourceforge.net/MySQLdb.html#

    关键段落截取:
    BaseCursor
    The base class for Cursor objects. This does not raise Warnings.
    CursorStoreResultMixIn
    Causes the Cursor to use the mysql_store_result() function to get the query result. The entire result set is stored on the client side.
    CursorUseResultMixIn
    Causes the cursor to use the mysql_use_result() function to get the query result. The result set is stored on the server side and is transferred row by row using fetch operations.
    CursorTupleRowsMixIn
    Causes the cursor to return rows as a tuple of the column values.

    CursorDictRowsMixIn

    Causes the cursor to return rows as a dictionary, where the keys are column names and the values are column values. Note that if the column names are not unique, i.e., you are selecting from two tables that share column names, some of them will be rewritten as table.column. This can be avoided by using the SQL ASkeyword. (This is yet-another reason not to use * in SQL queries, particularly where JOIN is involved.)
    Cursor
    The default cursor class. This class is composed of CursorWarningMixInCursorStoreResultMixInCursorTupleRowsMixIn, and BaseCursor, i.e. it raises Warning, usesmysql_store_result(), and returns rows as tuples.
    DictCursor
    Like Cursor except it returns rows as dictionaries.
    SSCursor
    A "server-side" cursor. Like Cursor but uses CursorUseResultMixIn. Use only if you are dealing with potentially large result sets.
    SSDictCursor
    Like SSCursor except it returns rows as dictionaries.



  • 相关阅读:
    深度学习中的Data Augmentation方法(转)基于keras
    caffe pytho接口
    finetuning caffe
    windows下配置Faster-RCNN
    caffe中的props
    centos上搭建git服务--3
    centos上搭建git服务--2
    Centos上搭建git服务
    loadrunner--基础2
    loadrunner11--基础使用
  • 原文地址:https://www.cnblogs.com/chenjianhong/p/4144296.html
Copyright © 2020-2023  润新知