• 毕达哥拉斯三元组(勾股数组)poj1305


    本原毕达哥拉斯三元组是由三个正整数x,y,z组成,且gcd(x,y,z)=1,x*x+y*y=z*z

    对于所有的本原毕达哥拉斯三元组(a,b,c) (a*a+b*b=c*c,a与b必定奇偶互异,且c为奇数。这里我们设b为偶数)

    则:和

    a=st

    b=(s*s-t*t)/2

    c=(s*s+t*t)/2

    其中s>t>=1且gcd(s,t)=1 

    是一一对应的。

    看看别人得证明:

    http://blog.csdn.net/loinus/article/details/7824841

    看看我的证明

    有了这个定理就这题就很好做了。

    Fermat vs. Pythagoras
    Time Limit: 2000MS   Memory Limit: 10000K
    Total Submissions: 1456   Accepted: 848

    Description

    Computer generated and assisted proofs and verification occupy a small niche in the realm of Computer Science. The first proof of the four-color problem was completed with the assistance of a computer program and current efforts in verification have succeeded in verifying the translation of high-level code down to the chip level. 
    This problem deals with computing quantities relating to part of Fermat's Last Theorem: that there are no integer solutions of a^n + b^n = c^n for n > 2. 
    Given a positive integer N, you are to write a program that computes two quantities regarding the solution of x^2 + y^2 = z^2, where x, y, and z are constrained to be positive integers less than or equal to N. You are to compute the number of triples (x,y,z) such that x < y < z, and they are relatively prime, i.e., have no common divisor larger than 1. You are also to compute the number of values 0 < p <= N such that p is not part of any triple (not just relatively prime triples). 

    Input

    The input consists of a sequence of positive integers, one per line. Each integer in the input file will be less than or equal to 1,000,000. Input is terminated by end-of-file

    Output

    For each integer N in the input file print two integers separated by a space. The first integer is the number of relatively prime triples (such that each component of the triple is <=N). The second number is the number of positive integers <=N that are not part of any triple whose components are all <=N. There should be one output line for each input line.

    Sample Input

    10
    25
    100
    

    Sample Output

    1 4
    4 9
    16 27
    //
    //  main.cpp
    //  poj1305
    //
    //  Created by 陈加寿 on 15/11/30.
    //  Copyright (c) 2015年 陈加寿. All rights reserved.
    //
    
    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <stdlib.h>
    using namespace std;
    
    int mark[1001000];
    
    long long gcd(long long a,long long b)
    {
        if(b==0) return a;
        return gcd(b,a%b);
    }
    
    int main(int argc, const char * argv[]) {
        int n;
        while(cin>>n)
        {
            memset(mark,0,sizeof(mark));
            int cnt=0;
            for(long long i=1;;i+=2)
            {
                long long a,b,c;
                if( (i*i+(i+2)*(i+2))/2 >n ) break;
                    
                for(long long j=i+2;;j+=2)
                {
                    if(gcd(i,j)==1)
                    {
                        c=(i*i+j*j)/2;
                        b=(j*j-i*i)/2;
                        a=i*j;
                        if(c>n) break;
                        cnt++;
                        for(long long k=1;k*c<=n;k++)
                        {
                            mark[a*k]=1;
                            mark[b*k]=1;
                            mark[c*k]=1;
                        }
                    }
                }
            }
            int ans=0;
            for(int i=1;i<=n;i++)
                if(mark[i]==0) ans++;
            cout<<cnt<<" "<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    bind函数
    尾置返回类型
    lambda表达式
    C++谓词
    capacity和size
    容器操作可能会使迭代器失效
    特殊的forward_list操作
    向顺序容器添加元素
    swap与assign
    迭代器
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/5008285.html
Copyright © 2020-2023  润新知