• Codeforces Round #182 (Div. 2) C


    有点意思的题目。。。

    解题的关键在于, 假设这个数组中负数的个数为N,非负数的个数为M ,N+M=L 。  

    然后证明的是, 对于有N个负数的数组, 这N个负数可以任意选择。  这样题目就变成了求解这个数组进行无限次操作,所能得到最小的负数的个数.

    然后bfs 直接上。

    那个性质很好证明。 不说了

    C. Yaroslav and Sequence
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Yaroslav has an array, consisting of (2·n - 1) integers. In a single operation Yaroslav can change the sign of exactly n elements in the array. In other words, in one operation Yaroslav can select exactly n array elements, and multiply each of them by -1.

    Yaroslav is now wondering: what maximum sum of array elements can be obtained if it is allowed to perform any number of described operations?

    Help Yaroslav.

    Input

    The first line contains an integer n (2 ≤ n ≤ 100). The second line contains (2·n - 1) integers — the array elements. The array elements do not exceed 1000 in their absolute value.

    Output

    In a single line print the answer to the problem — the maximum sum that Yaroslav can get.

    Sample test(s)
    input
    2
    50 50 50
    output
    150
    input
    2
    -1 -100 -1
    output
    100
    Note

    In the first sample you do not need to change anything. The sum of elements equals 150.

    In the second sample you need to change the sign of the first two elements. Then we get the sum of the elements equal to 100.

    #include <stdio.h>
    #include <algorithm>
    #include <string.h>
    #include <iostream>
    using namespace std;
    
    int que[10010];
    int g[220];
    int mark[220];
    
    int main()
    {
        int n;
        scanf("%d",&n);
        int cnt=0;
        for(int i=0;i<2*n-1;i++)
        {
            scanf("%d",&g[i]);
            if(g[i]<0) cnt++;
        }
        int qf=1,qd=0;
        que[0]=cnt;
        mark[cnt]=1;
        while(qf>qd)
        {
            int cur=que[qd++];
            for(int i=0;i<=cur;i++)
            {
                int tmp=n-i;
                if(i<=n && tmp<=2*n-1-cur)
                {
                    int nwnode=cur-i+tmp;
                    if(mark[nwnode]==0)
                    {
                        mark[nwnode]=1;
                        que[qf++]=nwnode;
                    }
                }
            }
        }
        int tmp;
        for(int i=0;i<=200;i++)
            if(mark[i]==1) 
            {
                tmp=i;
                break;
            }
        int ans=0;
        for(int i=0;i<2*n-1;i++)
        {
            if(g[i]<0)
            {
                g[i]*=-1;
            }
            ans += g[i];
        }
        sort(g,g+2*n-1);
        int sum=0;
        for(int i=0;i<tmp;i++)
            sum+=g[i];
        printf("%d",ans-2*sum);
        return 0;
    }
  • 相关阅读:
    HBase原理和架构
    Hive UDF作业
    Hive性能调优
    hive
    Netty4.0学习笔记系列之一:Server与Client的通讯
    JAVA NIO 简介(转)
    设计模式之观察者模式(Observer Pattern)
    设计模式之装饰者模式(Decorator Pattern)
    mysql存储过程写法—动态参数运用
    hashCode() 和equals() 区别和作用
  • 原文地址:https://www.cnblogs.com/chenhuan001/p/3064166.html
Copyright © 2020-2023  润新知