• java之Collection


    Collection

    1.List

         ArrayList源码分析

    package java.util;
    import java.util.function.Consumer;
    import java.util.function.Predicate;
    import java.util.function.UnaryOperator;
    import sun.misc.SharedSecrets;
    public class ArrayList<E> extends AbstractList<E>
            implements List<E>, RandomAccess, Cloneable, java.io.Serializable
    {
        private static final long serialVersionUID = 8683452581122892189L;
    
        /**
         * 默认初始化容量
         */
        private static final int DEFAULT_CAPACITY = 10;
    
        /**
         * 空数组
         */
        private static final Object[] EMPTY_ELEMENTDATA = {};
    
        /**
         * 空数组
         */
        private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
    
        /**
         * 存放元素的数组
         */
        transient Object[] elementData; 
    
        /**
         * 数组的元素个数
         */
        private int size;
    
        /** *有参构造容量大于0,一个新的对应容量的数组赋值给elementData;容量等于0,把空数组赋值给elementData;容**量小于0,抛出异常
        */
        public ArrayList(int initialCapacity) {
            if (initialCapacity > 0) {
                this.elementData = new Object[initialCapacity];
            } else if (initialCapacity == 0) {
                this.elementData = EMPTY_ELEMENTDATA;
            } else {
                throw new IllegalArgumentException("Illegal Capacity: "+
                                                   initialCapacity);
            }
        }
    
        /**
         *无参构造:将空数组赋值给了elementData
         */
        public ArrayList() {
            this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
        }
    
        /**
         *把Collection构建成ArrayList
         */
        public ArrayList(Collection<? extends E> c) {
            //使用Collection的toArray()方法得到一个对象数组并赋值给elementData
            elementData = c.toArray();
            //size是容器元素个数,所以集合转ArrayList存储时候要对size进行赋值。
            if ((size = elementData.length) != 0) {
                // //这里是当c.toArray出错,没有返回Object[]时,利用Arrays.copyOf 来复制集合c中的元素到elementData数组中
                if (elementData.getClass() != Object[].class)
                    elementData = Arrays.copyOf(elementData, size, Object[].class);
            } else {
                //假如collection为空的话,直接给elementData一个空数组
                this.elementData = EMPTY_ELEMENTDATA;
            }
        }
        /**
         *  截断多余的容量,在内存紧缺时候使用。
         */
        public void trimToSize() {
            modCount++;
            if (size < elementData.length) {
                elementData = (size == 0)
                  ? EMPTY_ELEMENTDATA
                  : Arrays.copyOf(elementData, size);
            }
        } 
        /**
         *  分配的数组最大限度。超出可能会OutOfMemoryError
         */
        private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
    
        /**
         * 返回元素个数
         */
        public int size() {
            return size;
        }
        /**
         * 判断ArrayList是否为空
         */
        public boolean isEmpty() {
            return size == 0;
        }
        /**
         * 判断ArrayList是否包含o
         */
        public boolean contains(Object o) {
            return indexOf(o) >= 0;
        }
        /**
         * 如果容器中的元素有和o相等的,那么返回第一个相等元素的下标,如果没有返回-1
         * 从前寻找
         */
        public int indexOf(Object o) {
            if (o == null) {
                for (int i = 0; i < size; i++)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = 0; i < size; i++)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
        /**
         * 功能和上面一样
         * 只不过从后寻找
         */
        public int lastIndexOf(Object o) {
            if (o == null) {
                for (int i = size-1; i >= 0; i--)
                    if (elementData[i]==null)
                        return i;
            } else {
                for (int i = size-1; i >= 0; i--)
                    if (o.equals(elementData[i]))
                        return i;
            }
            return -1;
        }
        /**
         * ArrayList的浅拷贝
         */
        public Object clone() {
            try {
                ArrayList<?> v = (ArrayList<?>) super.clone();
                //如果是对象的话,只会拷贝对象,不会拷贝对象的值
                v.elementData = Arrays.copyOf(elementData, size);
                v.modCount = 0;
                return v;
            } catch (CloneNotSupportedException e) {
                // this shouldn't happen, since we are Cloneable
                throw new InternalError(e);
            }
        }
    
        /**
         * ArrayList转换为数组
         */
        public Object[] toArray() {
            return Arrays.copyOf(elementData, size);
        }
    
        /**
         *  ArrayList转换为指定格式的数组
         *  如果ArrayList的长度大于数组a的长度,那么创建一个a类型的新数组
         *  如果ArrayList的长度小于数组a的长度,那么直接把ArrayList元素复制给a,并把下标等于size元素
         *  替换为null,后面的元素不动
         */
        @SuppressWarnings("unchecked")
        public <T> T[] toArray(T[] a) {
            if (a.length < size)
                // Make a new array of a's runtime type, but my contents:
                return (T[]) Arrays.copyOf(elementData, size, a.getClass());
            System.arraycopy(elementData, 0, a, 0, size);
            if (a.length > size)
                a[size] = null;
            return a;
        }
    
        /**
         * 查询 index角标元素
         */
        public E get(int index) {
            //越界检查
            rangeCheck(index);
            return elementData(index);
        }
    
        /**
         * 更新index角标元素
         */
        public E set(int index, E element) {
            //越界检查
            rangeCheck(index);
            E oldValue = elementData(index);
            elementData[index] = element;
            return oldValue;
        }
    
        /**
         * 从尾部插入元素操作
         */
        public boolean add(E e) {
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            //在新数组末端添加一个元素
            elementData[size++] = e;  
            return true;
        }
         private void ensureCapacityInternal(int minCapacity) {
            ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
        }
        private static int calculateCapacity(Object[] elementData, int minCapacity) {    //假如ArrayList是通过无参构造方法创建出来的对象,如果大于10就返回元素个数,如果小于10(默认初始容量)
        //就返回10
            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
                return Math.max(DEFAULT_CAPACITY, minCapacity);
            }
            //如果ArrayList不是通过无参构造创建出来的,那么直接返回元素个数即可
            return minCapacity;
        }
         //modCount自增,如果需要扩容就进行扩容    
         private void ensureExplicitCapacity(int minCapacity) {
            modCount++;  //继承自AbstractList 用来计集合修改的次数
            // overflow-conscious code
            if (minCapacity - elementData.length > 0)
                grow(minCapacity);
        }
        /**
         * 扩容1.5倍,假如还不够的话,把元素个数作为容量。
         */
        private void grow(int minCapacity) {
            // overflow-conscious code
            int oldCapacity = elementData.length;
            int newCapacity = oldCapacity + (oldCapacity >> 1);
            if (newCapacity - minCapacity < 0)
                newCapacity = minCapacity;
            //如果新容量太大且超过数组最大值,如果元素个数大于数组容量最大值,那么把容量设为Integer的最大值
            //如果元素个数小于数组最大值,那么把容量扩容到数组容量最大值即可
            if (newCapacity - MAX_ARRAY_SIZE > 0)
                newCapacity = hugeCapacity(minCapacity);
            // 构建新数组
            elementData = Arrays.copyOf(elementData, newCapacity);
        }
           private static int hugeCapacity(int minCapacity) {
            if (minCapacity < 0) // overflow
                throw new OutOfMemoryError();
            return (minCapacity > MAX_ARRAY_SIZE) ?
                Integer.MAX_VALUE :
                MAX_ARRAY_SIZE;
        }
        /**
         * 指定下标插入元素
         */
        public void add(int index, E element) {
            //下标越界判断
            rangeCheckForAdd(index);
            //和尾部增加一样,判断是否需要扩容,如需则构建新数组,modCount自增
            ensureCapacityInternal(size + 1);  // Increments modCount!!
            //其他元素下标后移
            System.arraycopy(elementData, index, elementData, index + 1,
                             size - index);
            //把元素添加到index下标处                 
            elementData[index] = element;
            //元素个数+1
            size++;
        }
         /**
          *  判断index是否越界
          */
        private void rangeCheckForAdd(int index) {
            if (index > size || index < 0)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
        /**
         *  ArrayList尾部添加Collection
         */
        public boolean addAll(Collection<? extends E> c) {
            //把Collection构建成数组
            Object[] a = c.toArray();
            int numNew = a.length;
            //判断是否需要扩容,如需则构建新数组,modCount自增
            ensureCapacityInternal(size + numNew);  // Increments modCount
            //把数组拷贝到原ArrayList尾部
            System.arraycopy(a, 0, elementData, size, numNew);
            //新size
            size += numNew;
            return numNew != 0;
        }
        /**
         *  从下标index处插入集合c
         */
         public boolean addAll(int index, Collection<? extends E> c) {
             //角标越界判断
            rangeCheckForAdd(index);
            Object[] a = c.toArray();
            int numNew = a.length;
            ensureCapacityInternal(size + numNew);  // Increments modCount
            int numMoved = size - index;
            //index处的元素后移数组c长度个位置
            if (numMoved > 0)
                System.arraycopy(elementData, index, elementData, index + numNew,
                                 numMoved);
            //把c数组插入上面移出的空位
            System.arraycopy(a, 0, elementData, index, numNew);
            size += numNew;
            return numNew != 0;
        }     
         /**
          * 如有必要,增加此 ArrayList 实例的容量,以确保它至少能够容纳最小容量参数所指定的元素数。
          */      
        public void ensureCapacity(int minCapacity) {
            //ArrayList不是通过无参构造创建的设置minExpand为0,如果是通过无参构造创建的设置为初始容量10
            int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
                // any size if not default element table
                ? 0
                // larger than default for default empty table. It's already
                // supposed to be at default size.
                : DEFAULT_CAPACITY;
            if (minCapacity > minExpand) {
                //modCound自增,进行扩容
                ensureExplicitCapacity(minCapacity);
            }
        }
        /**
         *  删除对应下标的元素
         */
        public E remove(int index) {
            //判断下标是否越界
            rangeCheck(index);
            //modCound自增
            modCount++;
            //根据下标获取对应的元素
            E oldValue = elementData(index);
            int numMoved = size - index - 1;
            //假如index对应元素不是最后一个元素,把这个元素后面的其他元素前移一位
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            //把最后一位设置为默认的null元素
            elementData[--size] = null; // clear to let GC do its work
            //返回移出的元素
            return oldValue;
        }
        //根据下标获取数组对应的元素
        @SuppressWarnings("unchecked")
        E elementData(int index) {
            return (E) elementData[index];
        }
        /**
         * 如果ArrayList中有o元素,从ArrayList中删除第一个o元素
         */
        public boolean remove(Object o) {
            //循环数组,如果其中元素和o相等,删除对应下标的元素并返回。
            if (o == null) {
                for (int index = 0; index < size; index++)
                    if (elementData[index] == null) {
                        fastRemove(index);
                        return true;
                    }
            } else {
                for (int index = 0; index < size; index++)
                    if (o.equals(elementData[index])) {
                        fastRemove(index);
                        return true;
                    }
            }
            return false;
        }
        /*
         * modCound自增,移出index处的元素,然后后面元素前移,尾元素赋值null
         * 不用返回对应元素,不会越界所以不需要越界判断。
         */
        private void fastRemove(int index) {
            modCount++;
            int numMoved = size - index - 1;
            if (numMoved > 0)
                System.arraycopy(elementData, index+1, elementData, index,
                                 numMoved);
            elementData[--size] = null; // clear to let GC do its work
        }
        /**
         * 从ArrayList中删除Collection包含的元素
         */
        public boolean removeAll(Collection<?> c) {
            //查看Objects源码 此处如果c为空,抛出空指针异常
            Objects.requireNonNull(c);
            return batchRemove(c, false);
        }
        /**
         * 从ArrayList中保留c中包含的元素
         */
         public boolean retainAll(Collection<?> c) {
            Objects.requireNonNull(c);
            return batchRemove(c, true);
        }
        private boolean batchRemove(Collection<?> c, boolean complement) {
            final Object[] elementData = this.elementData;
            int r = 0, w = 0;
            boolean modified = false;
            try {
                for (; r < size; r++)
                    //complement为false,c中不包含的元素,从下标为0处放入到elementData中
                    //complement为true,c中包含的元素,从下标为0处放入到elementData中
                    if (c.contains(elementData[r]) == complement)
                        elementData[w++] = elementData[r];
            } finally {
                //由于c.contains报异常导致r!=size,把从r开始的后面项,都赋值到elementData的w项后
                //即现在的elementData的w项前的元素,都是c中不包含的。w和w项后的元素还未判断,整体拿过来
                if (r != size) {
                    System.arraycopy(elementData, r,
                                     elementData, w,
                                     size - r);
                //把w变为elementData元素的"size"。这里的size不是实际的元素个数
                //由于上面为了提高性能,没有创建新数组。而是把不被c包含的元素从开头再次存入这个数组。
                //没有存放过的下标位上不是null而是以前的元素。
                w += size - r;
                }
                //如果w=size,那么说明异常前,elementData的前r项都不被c包含
                //此处说明有元素不被c包含
                //清空上面提到的老元素
                if (w != size) {
                    // clear to let GC do its work
                    for (int i = w; i < size; i++)
                        elementData[i] = null;
                    //modCount增加size-w  即从中剔除了size-w个元素
                    modCount += size - w;
                    size = w;
                    modified = true;
                }
            }
            return modified;
        }    
       /**
        * 清空数组中的元素
        */
        public void clear() {
            modCount++;
            // clear to let GC do its work
            for (int i = 0; i < size; i++)
                elementData[i] = null;
            size = 0;
        }
        /**
         *   删除从fromIndex到toIndex(不包含)的元素  注意:继承ArrayList的类才可用
         */
        protected void removeRange(int fromIndex, int toIndex) {
            modCount++;
            int numMoved = size - toIndex;
            //把从toInDex开始的元素,复制到fromIndex---fromIndex+numMoed(不包含)处
            System.arraycopy(elementData, toIndex, elementData, fromIndex,
                             numMoved);
            //清空fromIndex+numMoed及后面的元素
            // clear to let GC do its work
            int newSize = size - (toIndex-fromIndex);
            for (int i = newSize; i < size; i++) {
                elementData[i] = null;
            }
            size = newSize;
        }
         /**
          *  越界检查
          */
        private void rangeCheck(int index) {
            if (index >= size)
                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
        }
        private String outOfBoundsMsg(int index) {
            return "Index: "+index+", Size: "+size;
        }
        /**
         * Save the state of the <tt>ArrayList</tt> instance to a stream (that
         * is, serialize it).
         *
         * @serialData The length of the array backing the <tt>ArrayList</tt>
         *             instance is emitted (int), followed by all of its elements
         *             (each an <tt>Object</tt>) in the proper order.
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException{
            // Write out element count, and any hidden stuff
            int expectedModCount = modCount;
            s.defaultWriteObject();
    
            // Write out size as capacity for behavioural compatibility with clone()
            s.writeInt(size);
    
            // Write out all elements in the proper order.
            for (int i=0; i<size; i++) {
                s.writeObject(elementData[i]);
            }
    
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
        /**
         * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
         * deserialize it).
         */
        private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            elementData = EMPTY_ELEMENTDATA;
    
            // Read in size, and any hidden stuff
            s.defaultReadObject();
    
            // Read in capacity
            s.readInt(); // ignored
    
            if (size > 0) {
                // be like clone(), allocate array based upon size not capacity
                int capacity = calculateCapacity(elementData, size);
                SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity);
                ensureCapacityInternal(size);
    
                Object[] a = elementData;
                // Read in all elements in the proper order.
                for (int i=0; i<size; i++) {
                    a[i] = s.readObject();
                }
            }
        }
    /*           我们在使用List,Set的时候,为了实现对其数据的遍历,我们经常使用到了Iterator(迭代器)。使用迭代器,你不需要干涉其遍历的过程,只需要每次取出一个你想要的数据进行处理就可以了。但是在使用的时候也是有不同的。List和Set都有iterator()来取得其迭代器。对List来说,你也可以通过listIterator()取得其迭代器,两种迭代器在有些时候是不能通用的,
       terator和ListIterator主要区别在以下方面:
           1. iterator()方法在set和list接口中都有定义,但是ListIterator()仅存在于list接口中(或实现类中);
           2. ListIterator有add()方法,可以向List中添加对象,而Iterator不能
           3.ListIterator和Iterator都有hasNext()和next()方法,可以实现顺序向后遍历,但是ListIterator有hasPrevious()和previous()方法,可以实现逆向(顺序向前)遍历。Iterator就不可以。
           4. ListIterator可以定位当前的索引位置,nextIndex()和previousIndex()可以实现。Iterator没有此功能。
           5.都可实现删除对象,但是ListIterator可以实现对象的修改,set()方法可以实现。Iierator仅能遍历,不能修改。  
             因为ListIterator的这些功能,可以实现对LinkedList等List数据结构的操作。其实,数组对象也可以用迭代器来实现。   
    */  
        /**
         *  从AbstractList继承过来的,返回当前索引位置的迭代器
         */
        public ListIterator<E> listIterator(int index) {
            if (index < 0 || index > size)
                throw new IndexOutOfBoundsException("Index: "+index);
            return new ListItr(index);
        }
        /**
         * 从AbstractList继承过来的,返回此列表元素的列表迭代器
         */
        public ListIterator<E> listIterator() {
            return new ListItr(0);
        }
    
        /**
         * 返回以恰当顺序在此列表的元素上进行迭代的迭代器。
         */
        public Iterator<E> iterator() {
            return new Itr();
        }
    
        /**
         * An optimized version of AbstractList.Itr
         */
        private class Itr implements Iterator<E> {
            int cursor;       // index of next element to return
            int lastRet = -1; // index of last element returned; -1 if no such
            int expectedModCount = modCount;
    
            Itr() {}
    
            public boolean hasNext() {
                return cursor != size;
            }
    
            @SuppressWarnings("unchecked")
            public E next() {
                checkForComodification();
                int i = cursor;
                if (i >= size)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i + 1;
                return (E) elementData[lastRet = i];
            }
    
            public void remove() {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.remove(lastRet);
                    cursor = lastRet;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            @Override
            @SuppressWarnings("unchecked")
            public void forEachRemaining(Consumer<? super E> consumer) {
                Objects.requireNonNull(consumer);
                final int size = ArrayList.this.size;
                int i = cursor;
                if (i >= size) {
                    return;
                }
                final Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length) {
                    throw new ConcurrentModificationException();
                }
                while (i != size && modCount == expectedModCount) {
                    consumer.accept((E) elementData[i++]);
                }
                // update once at end of iteration to reduce heap write traffic
                cursor = i;
                lastRet = i - 1;
                checkForComodification();
            }
    
            final void checkForComodification() {
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
            }
        }
    
        /**
         * An optimized version of AbstractList.ListItr
         */
        private class ListItr extends Itr implements ListIterator<E> {
            ListItr(int index) {
                super();
                cursor = index;
            }
    
            public boolean hasPrevious() {
                return cursor != 0;
            }
    
            public int nextIndex() {
                return cursor;
            }
    
            public int previousIndex() {
                return cursor - 1;
            }
    
            @SuppressWarnings("unchecked")
            public E previous() {
                checkForComodification();
                int i = cursor - 1;
                if (i < 0)
                    throw new NoSuchElementException();
                Object[] elementData = ArrayList.this.elementData;
                if (i >= elementData.length)
                    throw new ConcurrentModificationException();
                cursor = i;
                return (E) elementData[lastRet = i];
            }
    
            public void set(E e) {
                if (lastRet < 0)
                    throw new IllegalStateException();
                checkForComodification();
    
                try {
                    ArrayList.this.set(lastRet, e);
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
    
            public void add(E e) {
                checkForComodification();
    
                try {
                    int i = cursor;
                    ArrayList.this.add(i, e);
                    cursor = i + 1;
                    lastRet = -1;
                    expectedModCount = modCount;
                } catch (IndexOutOfBoundsException ex) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * Returns a view of the portion of this list between the specified
         * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
         * {@code fromIndex} and {@code toIndex} are equal, the returned list is
         * empty.)  The returned list is backed by this list, so non-structural
         * changes in the returned list are reflected in this list, and vice-versa.
         * The returned list supports all of the optional list operations.
         *
         * <p>This method eliminates the need for explicit range operations (of
         * the sort that commonly exist for arrays).  Any operation that expects
         * a list can be used as a range operation by passing a subList view
         * instead of a whole list.  For example, the following idiom
         * removes a range of elements from a list:
         * <pre>
         *      list.subList(from, to).clear();
         * </pre>
         * Similar idioms may be constructed for {@link #indexOf(Object)} and
         * {@link #lastIndexOf(Object)}, and all of the algorithms in the
         * {@link Collections} class can be applied to a subList.
         *
         * <p>The semantics of the list returned by this method become undefined if
         * the backing list (i.e., this list) is <i>structurally modified</i> in
         * any way other than via the returned list.  (Structural modifications are
         * those that change the size of this list, or otherwise perturb it in such
         * a fashion that iterations in progress may yield incorrect results.)
         *
         * @throws IndexOutOfBoundsException {@inheritDoc}
         * @throws IllegalArgumentException {@inheritDoc}
         */
        public List<E> subList(int fromIndex, int toIndex) {
            subListRangeCheck(fromIndex, toIndex, size);
            return new SubList(this, 0, fromIndex, toIndex);
        }
    
        static void subListRangeCheck(int fromIndex, int toIndex, int size) {
            if (fromIndex < 0)
                throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
            if (toIndex > size)
                throw new IndexOutOfBoundsException("toIndex = " + toIndex);
            if (fromIndex > toIndex)
                throw new IllegalArgumentException("fromIndex(" + fromIndex +
                                                   ") > toIndex(" + toIndex + ")");
        }
    
        private class SubList extends AbstractList<E> implements RandomAccess {
            private final AbstractList<E> parent;
            private final int parentOffset;
            private final int offset;
            int size;
    
            SubList(AbstractList<E> parent,
                    int offset, int fromIndex, int toIndex) {
                this.parent = parent;
                this.parentOffset = fromIndex;
                this.offset = offset + fromIndex;
                this.size = toIndex - fromIndex;
                this.modCount = ArrayList.this.modCount;
            }
    
            public E set(int index, E e) {
                rangeCheck(index);
                checkForComodification();
                E oldValue = ArrayList.this.elementData(offset + index);
                ArrayList.this.elementData[offset + index] = e;
                return oldValue;
            }
    
            public E get(int index) {
                rangeCheck(index);
                checkForComodification();
                return ArrayList.this.elementData(offset + index);
            }
    
            public int size() {
                checkForComodification();
                return this.size;
            }
    
            public void add(int index, E e) {
                rangeCheckForAdd(index);
                checkForComodification();
                parent.add(parentOffset + index, e);
                this.modCount = parent.modCount;
                this.size++;
            }
    
            public E remove(int index) {
                rangeCheck(index);
                checkForComodification();
                E result = parent.remove(parentOffset + index);
                this.modCount = parent.modCount;
                this.size--;
                return result;
            }
    
            protected void removeRange(int fromIndex, int toIndex) {
                checkForComodification();
                parent.removeRange(parentOffset + fromIndex,
                                   parentOffset + toIndex);
                this.modCount = parent.modCount;
                this.size -= toIndex - fromIndex;
            }
    
            public boolean addAll(Collection<? extends E> c) {
                return addAll(this.size, c);
            }
    
            public boolean addAll(int index, Collection<? extends E> c) {
                rangeCheckForAdd(index);
                int cSize = c.size();
                if (cSize==0)
                    return false;
    
                checkForComodification();
                parent.addAll(parentOffset + index, c);
                this.modCount = parent.modCount;
                this.size += cSize;
                return true;
            }
    
            public Iterator<E> iterator() {
                return listIterator();
            }
    
            public ListIterator<E> listIterator(final int index) {
                checkForComodification();
                rangeCheckForAdd(index);
                final int offset = this.offset;
    
                return new ListIterator<E>() {
                    int cursor = index;
                    int lastRet = -1;
                    int expectedModCount = ArrayList.this.modCount;
    
                    public boolean hasNext() {
                        return cursor != SubList.this.size;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E next() {
                        checkForComodification();
                        int i = cursor;
                        if (i >= SubList.this.size)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i + 1;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    public boolean hasPrevious() {
                        return cursor != 0;
                    }
    
                    @SuppressWarnings("unchecked")
                    public E previous() {
                        checkForComodification();
                        int i = cursor - 1;
                        if (i < 0)
                            throw new NoSuchElementException();
                        Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length)
                            throw new ConcurrentModificationException();
                        cursor = i;
                        return (E) elementData[offset + (lastRet = i)];
                    }
    
                    @SuppressWarnings("unchecked")
                    public void forEachRemaining(Consumer<? super E> consumer) {
                        Objects.requireNonNull(consumer);
                        final int size = SubList.this.size;
                        int i = cursor;
                        if (i >= size) {
                            return;
                        }
                        final Object[] elementData = ArrayList.this.elementData;
                        if (offset + i >= elementData.length) {
                            throw new ConcurrentModificationException();
                        }
                        while (i != size && modCount == expectedModCount) {
                            consumer.accept((E) elementData[offset + (i++)]);
                        }
                        // update once at end of iteration to reduce heap write traffic
                        lastRet = cursor = i;
                        checkForComodification();
                    }
    
                    public int nextIndex() {
                        return cursor;
                    }
    
                    public int previousIndex() {
                        return cursor - 1;
                    }
    
                    public void remove() {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            SubList.this.remove(lastRet);
                            cursor = lastRet;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void set(E e) {
                        if (lastRet < 0)
                            throw new IllegalStateException();
                        checkForComodification();
    
                        try {
                            ArrayList.this.set(offset + lastRet, e);
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    public void add(E e) {
                        checkForComodification();
    
                        try {
                            int i = cursor;
                            SubList.this.add(i, e);
                            cursor = i + 1;
                            lastRet = -1;
                            expectedModCount = ArrayList.this.modCount;
                        } catch (IndexOutOfBoundsException ex) {
                            throw new ConcurrentModificationException();
                        }
                    }
    
                    final void checkForComodification() {
                        if (expectedModCount != ArrayList.this.modCount)
                            throw new ConcurrentModificationException();
                    }
                };
            }
    
            public List<E> subList(int fromIndex, int toIndex) {
                subListRangeCheck(fromIndex, toIndex, size);
                return new SubList(this, offset, fromIndex, toIndex);
            }
    
            private void rangeCheck(int index) {
                if (index < 0 || index >= this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private void rangeCheckForAdd(int index) {
                if (index < 0 || index > this.size)
                    throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
            }
    
            private String outOfBoundsMsg(int index) {
                return "Index: "+index+", Size: "+this.size;
            }
    
            private void checkForComodification() {
                if (ArrayList.this.modCount != this.modCount)
                    throw new ConcurrentModificationException();
            }
    
            public Spliterator<E> spliterator() {
                checkForComodification();
                return new ArrayListSpliterator<E>(ArrayList.this, offset,
                                                   offset + this.size, this.modCount);
            }
        }
    
        @Override
        public void forEach(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            final int expectedModCount = modCount;
            @SuppressWarnings("unchecked")
            final E[] elementData = (E[]) this.elementData;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                action.accept(elementData[i]);
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
        }
    
        /**
         * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
         * and <em>fail-fast</em> {@link Spliterator} over the elements in this
         * list.
         *
         * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
         * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
         * Overriding implementations should document the reporting of additional
         * characteristic values.
         *
         * @return a {@code Spliterator} over the elements in this list
         * @since 1.8
         */
        @Override
        public Spliterator<E> spliterator() {
            return new ArrayListSpliterator<>(this, 0, -1, 0);
        }
    
        /** Index-based split-by-two, lazily initialized Spliterator */
        static final class ArrayListSpliterator<E> implements Spliterator<E> {
    
            /*
             * If ArrayLists were immutable, or structurally immutable (no
             * adds, removes, etc), we could implement their spliterators
             * with Arrays.spliterator. Instead we detect as much
             * interference during traversal as practical without
             * sacrificing much performance. We rely primarily on
             * modCounts. These are not guaranteed to detect concurrency
             * violations, and are sometimes overly conservative about
             * within-thread interference, but detect enough problems to
             * be worthwhile in practice. To carry this out, we (1) lazily
             * initialize fence and expectedModCount until the latest
             * point that we need to commit to the state we are checking
             * against; thus improving precision.  (This doesn't apply to
             * SubLists, that create spliterators with current non-lazy
             * values).  (2) We perform only a single
             * ConcurrentModificationException check at the end of forEach
             * (the most performance-sensitive method). When using forEach
             * (as opposed to iterators), we can normally only detect
             * interference after actions, not before. Further
             * CME-triggering checks apply to all other possible
             * violations of assumptions for example null or too-small
             * elementData array given its size(), that could only have
             * occurred due to interference.  This allows the inner loop
             * of forEach to run without any further checks, and
             * simplifies lambda-resolution. While this does entail a
             * number of checks, note that in the common case of
             * list.stream().forEach(a), no checks or other computation
             * occur anywhere other than inside forEach itself.  The other
             * less-often-used methods cannot take advantage of most of
             * these streamlinings.
             */
    
            private final ArrayList<E> list;
            private int index; // current index, modified on advance/split
            private int fence; // -1 until used; then one past last index
            private int expectedModCount; // initialized when fence set
    
            /** Create new spliterator covering the given  range */
            ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
                                 int expectedModCount) {
                this.list = list; // OK if null unless traversed
                this.index = origin;
                this.fence = fence;
                this.expectedModCount = expectedModCount;
            }
    
            private int getFence() { // initialize fence to size on first use
                int hi; // (a specialized variant appears in method forEach)
                ArrayList<E> lst;
                if ((hi = fence) < 0) {
                    if ((lst = list) == null)
                        hi = fence = 0;
                    else {
                        expectedModCount = lst.modCount;
                        hi = fence = lst.size;
                    }
                }
                return hi;
            }
    
            public ArrayListSpliterator<E> trySplit() {
                int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
                return (lo >= mid) ? null : // divide range in half unless too small
                    new ArrayListSpliterator<E>(list, lo, index = mid,
                                                expectedModCount);
            }
    
            public boolean tryAdvance(Consumer<? super E> action) {
                if (action == null)
                    throw new NullPointerException();
                int hi = getFence(), i = index;
                if (i < hi) {
                    index = i + 1;
                    @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
                    action.accept(e);
                    if (list.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    return true;
                }
                return false;
            }
    
            public void forEachRemaining(Consumer<? super E> action) {
                int i, hi, mc; // hoist accesses and checks from loop
                ArrayList<E> lst; Object[] a;
                if (action == null)
                    throw new NullPointerException();
                if ((lst = list) != null && (a = lst.elementData) != null) {
                    if ((hi = fence) < 0) {
                        mc = lst.modCount;
                        hi = lst.size;
                    }
                    else
                        mc = expectedModCount;
                    if ((i = index) >= 0 && (index = hi) <= a.length) {
                        for (; i < hi; ++i) {
                            @SuppressWarnings("unchecked") E e = (E) a[i];
                            action.accept(e);
                        }
                        if (lst.modCount == mc)
                            return;
                    }
                }
                throw new ConcurrentModificationException();
            }
    
            public long estimateSize() {
                return (long) (getFence() - index);
            }
    
            public int characteristics() {
                return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
            }
        }
    
        @Override
        public boolean removeIf(Predicate<? super E> filter) {
            Objects.requireNonNull(filter);
            // figure out which elements are to be removed
            // any exception thrown from the filter predicate at this stage
            // will leave the collection unmodified
            int removeCount = 0;
            final BitSet removeSet = new BitSet(size);
            final int expectedModCount = modCount;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                @SuppressWarnings("unchecked")
                final E element = (E) elementData[i];
                if (filter.test(element)) {
                    removeSet.set(i);
                    removeCount++;
                }
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
    
            // shift surviving elements left over the spaces left by removed elements
            final boolean anyToRemove = removeCount > 0;
            if (anyToRemove) {
                final int newSize = size - removeCount;
                for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {
                    i = removeSet.nextClearBit(i);
                    elementData[j] = elementData[i];
                }
                for (int k=newSize; k < size; k++) {
                    elementData[k] = null;  // Let gc do its work
                }
                this.size = newSize;
                if (modCount != expectedModCount) {
                    throw new ConcurrentModificationException();
                }
                modCount++;
            }
    
            return anyToRemove;
        }
    
        @Override
        @SuppressWarnings("unchecked")
        public void replaceAll(UnaryOperator<E> operator) {
            Objects.requireNonNull(operator);
            final int expectedModCount = modCount;
            final int size = this.size;
            for (int i=0; modCount == expectedModCount && i < size; i++) {
                elementData[i] = operator.apply((E) elementData[i]);
            }
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }
    
        @Override
        @SuppressWarnings("unchecked")
        public void sort(Comparator<? super E> c) {
            final int expectedModCount = modCount;
            Arrays.sort((E[]) elementData, 0, size, c);
            if (modCount != expectedModCount) {
                throw new ConcurrentModificationException();
            }
            modCount++;
        }
    }
    View Code

        总结  :

                1.底层为数组,当容量满时候进行扩容每次为1.5倍,如果还不够的话容量为元素个数。构建新数组,把原数组拷贝进新数组。

                2.无参创建出来的ArrayList在第一次add时候会给一个10的容量。所以我们尽可能的在创建时候给它一个初始值,如果不确定那么用默认的10.

                3. 查询效率高,插入删除元素会导致后面的所有元素前移或者后移下表,导致性能下降。即插入和删除效率低。

                4.在removeAll和retainAll方法中用到了私有方法batchRemove。这个方法里面有个个算法,过滤数组中的元素,赋值给原数组。把可能c.contains报异常处理放在了finally中

    LinkedList

  • 相关阅读:
    linux 杂类
    set
    C++ 基础 杂类
    linux 添加samba账户
    git 常用命令
    git 设置bitbucket 邮箱、用户
    C++ shared_ptr
    git 免密码配置
    2014的新目标
    为/Date(1332919782070)/转时间2013-09-23
  • 原文地址:https://www.cnblogs.com/chengxuyuan-liu/p/11707550.html
Copyright © 2020-2023  润新知