• HDU 5418——Victor and World——————【状态压缩+floyd】


    Victor and World

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Others)
    Total Submission(s): 891    Accepted Submission(s): 399


    Problem Description
    After trying hard for many years, Victor has finally received a pilot license. To have a celebration, he intends to buy himself an airplane and fly around the world. There are n countries on the earth, which are numbered from 1 to n. They are connected by m undirected flights, detailedly the i-th flight connects the ui-th and thevi-th country, and it will cost Victor's airplane wi L fuel if Victor flies through it. And it is possible for him to fly to every country from the first country.

    Victor now is at the country whose number is 1, he wants to know the minimal amount of fuel for him to visit every country at least once and finally return to the first country.
     
    Input
    The first line of the input contains an integer T, denoting the number of test cases.
    In every test case, there are two integers n and m in the first line, denoting the number of the countries and the number of the flights.

    Then there are m lines, each line contains three integers uivi and wi, describing a flight.

    1T20.

    1n16.

    1m100000.

    1wi100.

    1ui,vin.
     
    Output
    Your program should print T lines : the i-th of these should contain a single integer, denoting the minimal amount of fuel for Victor to finish the travel.
     
    Sample Input
    1
    3 2
    1 2 2
    1 3 3
     
    Sample Output
    10
     
    Source
     
    题目大意:给你t组数据,每组数据给出n和m,分别表示n个城市,m条航线,然后会有m行u,v,w分别表示航线的起点和终点以及飞跃这段航线需要的燃油量,问你从城市1至少经过其余所有城市1次最后飞回城市1的的燃油量最少是多少。
     
    解题思路:首先去重边,然后跑floyd算出所有城市之间的最短路径dis,注意d[i][i]=0。由于n个数很小,可以看出是道状态压缩题目。我们用dp[s][i]表示当前的城市访问状态是s,最后到达的城市是i的最少燃油耗费。s表示状态,即用二进制表示城市是否到过。状态转移方程为dp[s|(1<<(i-1))][i]=min(dp[s|(1<<(i-1))][i],dp[s][j]+dis[j][i]) i和j应该满足s&(1<<(i-1))==0&& s&(1<<(j-1))!=0。表示s状态还没到过i城市,s状态已经到过j城市。 最后枚举所有终点为1的情况,得到最小值。
     
     
    #include<bits/stdc++.h>
    using namespace std;
    const int INF=0x3f3f3f3f;
    int d[20][20],dp[(1<<20)][20];
    int main(){
        int t,n,m,a,b,c;
        scanf("%d",&t);
        while(t--){
            memset(d,INF,sizeof(d));
            memset(dp,INF,sizeof(dp));
            scanf("%d%d",&n,&m);
            for(int i=0;i<m;i++){
                scanf("%d%d%d",&a,&b,&c);
                if(d[a][b]>c){
                    d[a][b]=d[b][a]=c;
                }
            }
            for(int i=1;i<=n;i++)
                d[i][i]=0;
            for(int k=1;k<=n;k++){
                for(int i=1;i<=n;i++){
                    for(int j=1;j<=n;j++){
                        if(d[i][k]<INF&&d[k][j]<INF)
                        d[i][j] = d[i][j]<(d[i][k]+d[k][j])?d[i][j]:(d[i][k]+d[k][j]);
                    }
                }
            }
            dp[1][1]=0;
            for(int s=1;s<(1<<n);s++){
                for(int i=1;i<=n;i++){
                    for(int j=1;j<=n;j++){
                        if(( (s&(1<<(i-1)))==0 ) &&( (s&(1<<(j-1))) ))
                        dp[s|(1<<(i-1))][i]=min(dp[s|(1<<(i-1))][i],dp[s][j]+d[j][i]);
                    }
                }
            }
            int ans=INF;
            for(int i=1;i<=n;i++){
                ans=min(ans,dp[(1<<n)-1][i]+d[i][1]);
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    

      

  • 相关阅读:
    关于网络安全攻防演化博弈的研究小议
    入侵检测技术框架总论【课题笔记】
    态势提取的前置基础技术:数据集成、数据规约、数据融合
    网络安全态势感知框架小议
    入侵检测基本准则(Basic principles of intrusion detection)【v1.0】
    Research on collection technology and countermeasure technology of system behavior log for HIDS,面向HIDS的日志采集技术与对抗技术研究
    Tomcat(二):Tomcat处理一个Http请求
    Tomcat(一):Tomcat启动时加载web.xml
    SpringMVC(十七):Web.xml初始化流程源码分析
    设计模式(九)责任链(Chain of Responsibility)
  • 原文地址:https://www.cnblogs.com/chengsheng/p/4780788.html
Copyright © 2020-2023  润新知