CRB and Tree
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 967 Accepted Submission(s): 308
Problem Description
CRB has a tree, whose vertices are labeled by 1, 2, …, N. They are connected by N – 1 edges. Each edge has a weight.
For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
For any two vertices u and v(possibly equal), f(u,v) is xor(exclusive-or) sum of weights of all edges on the path from u to v.
CRB’s task is for given s, to calculate the number of unordered pairs (u,v) such that f(u,v) = s. Can you help him?
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a, b and c denoting an edge between a and b, whose weight is c.
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s.
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a, b ≤ N
0 ≤ c, s ≤ 105
It is guaranteed that given edges form a tree.
The first line contains an integer N denoting the number of vertices.
Each of the next N - 1 lines contains three space separated integers a, b and c denoting an edge between a and b, whose weight is c.
The next line contains an integer Q denoting the number of queries.
Each of the next Q lines contains a single integer s.
1 ≤ T ≤ 25
1 ≤ N ≤ 105
1 ≤ Q ≤ 10
1 ≤ a, b ≤ N
0 ≤ c, s ≤ 105
It is guaranteed that given edges form a tree.
Output
For each query, output one line containing the answer.
Sample Input
1
3
1 2 1
2 3 2
3
2
3
4
Sample Output
1
1
0
Hint
For the first query, (2, 3) is the only pair that f(u, v) = 2.
For the second query, (1, 3) is the only one.
For the third query, there are no pair (u, v) such that f(u, v) = 4.题目大意:给你一棵n个顶点n-1条边的树,每条边有一个权重,定义f(u,v)为结点u到结点v的边权异或值的和,让你求在该树上有多少f(u,v)=s的无序对。
解题思路:由于异或的性质。a^a=0。f(u,v)=f(1,u)^f(1,v)。f(u,v)=s => f(1,u)^f(1,v)=s => f(1,v)=f(1,u)^s。那么我们可以枚举u,然后得出f(1,v)为 f(1,u)^s的有多少个。对于s为0的情况,我们发现对于f(1,u)^0的结果还是f(1,u)我们在计算的时候会加一次f(1,u)本身的情况。那么我们最后只需要加上n就可以满足f(u,v)=f(u,u)的情况了。
如样例:
555
3
1 2 1
1 3 1
1
0
如果不加上n且没除以2之前的结果会是5。如果加上n那么结果就是8。最后除以2以后就是4。
#include<bits/stdc++.h> using namespace std; const int maxn=1e5+200; int n,tot; struct Edge{ int to,w,next; Edge(){} Edge(int too,int ww,int nextt){ to=too;w=ww;next=nextt; } }edges[maxn*3]; typedef long long INT; int head[maxn*2],val[maxn*2]; int times[maxn*2]; void init(){ tot=0; memset(head,-1,sizeof(head)); memset(times,0,sizeof(times)); memset(val,0,sizeof(val)); } void addedge(int fro , int to,int wei){ edges[tot]=Edge(to,wei,head[fro]); head[fro]=tot++; edges[tot]=Edge(fro,wei,head[to]); head[to]=tot++; } void dfs(int u,int fa){ times[val[u]]++; for(int i=head[u];i!=-1;i=edges[i].next){ Edge &e=edges[i]; if(e.to==fa) continue; val[e.to]=val[u]^e.w; dfs(e.to,u); } return ; } int main(){ // freopen("1011.in","r",stdin); // freopen("why.txt","w",stdout); int t , m, a,b,c ,s; scanf("%d",&t); while(t--){ init(); scanf("%d",&n); for(int i=1;i<n;i++){ scanf("%d%d%d",&a,&b,&c); addedge(a,b,c); } dfs(1,-1); scanf("%d",&m); while(m--){ INT ans=0; scanf("%d",&s); for(int i=1;i<=n;++i){ if(times[val[i]^s]){ ans+=times[val[i]^s]; } } if(s==0) ans+=n; printf("%lld ",ans/2); } } return 0; }