A continued fraction of height n is a fraction of form . You are given two rational numbers, one is represented as and the other one is represented as a finite fraction of height n. Check if they are equal.
The first line contains two space-separated integers p, q (1 ≤ q ≤ p ≤ 1018) — the numerator and the denominator of the first fraction.
The second line contains integer n (1 ≤ n ≤ 90) — the height of the second fraction. The third line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 1018) — the continued fraction.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Print "YES" if these fractions are equal and "NO" otherwise.
9 4
2
2 4
YES
9 4
3
2 3 1
YES
9 4
3
1 2 4
NO
In the first sample .
In the second sample .
In the third sample .
题目大意:判断两个式子是不是相等。
解题思路:p=q*a+r(a表示商,r表示余数)。则可以每次判断p-q*ai(相当于ai后边的分式的结果)的值是否小于0,如果小于0,说明肯定是不等的;如果大于0,将q当做p,将(p-q*ai)当做q(p、q的转变,表示将后边的一串分式取倒数)重复上边的过程。
#include<bits/stdc++.h> using namespace std; #define LL long long LL a[100]; LL gcd(LL a,LL b){ return b?gcd(b,a%b):a; } int main(){ LL p,q,tm; int n,i,j,k; while(scanf("%I64d%I64d",&p,&q)!=EOF){ scanf("%d",&n); bool flag=0; for(i=0;i<n;i++){ scanf("%I64d",&a[i]); if(flag==1){ continue; } if(p/q<a[i]){ flag=1; continue; } tm=q; q=p-q*a[i]; if(q<=0&&i!=n-1){ flag=1; continue; } p=tm; tm=gcd(p,q); p/=tm; q/=tm; } if(q>0) flag=1; if(flag==1){ printf("NO "); }else{ printf("YES "); } } return 0; }