• POj2387——Til the Cows Come Home——————【最短路】


    A - Til the Cows Come Home
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible. 

    Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it. 

    Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

    Input

    * Line 1: Two integers: T and N 

    * Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

    Output

    * Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

    Sample Input

    5 5
    1 2 20
    2 3 30
    3 4 20
    4 5 20
    1 5 100

    Sample Output

    90

    Hint

    INPUT DETAILS: 

    There are five landmarks. 

    OUTPUT DETAILS: 

    Bessie can get home by following trails 4, 3, 2, and 1.
     
     
    裸的最短路,但是wa了两次,看了别人的博客,说可能存在重边的可能,所以在输入两节点距离时,加入去重就AC了。
    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    const int maxn=1200;
    const int INF=1e9;
    bool vis[maxn];
    int d[maxn];
    int w[maxn][maxn];
    int T,N;
    void Dijkstra(int st){
    
         for(int i=0;i<N;i++){
    
            int x,m=INF;
            for(int y=N;y>=1;y--){
    
                if(!vis[y]&&d[y]<=m)
                    m=d[x=y];
            }
            vis[x]=1;
            for(int y=N;y>=1;y--){
    
                d[y]=min(d[y],d[x]+w[x][y]);
            }
        }
        printf("%d
    ",d[1]);
    }
    void init(){
    
        for(int i=0;i<=N;i++){
    
            d[i]=(i==N?0:INF);
            for(int j=0;j<=N;j++){
    
                if(i==j)
                    w[i][j]=0;
                else
                    w[i][j]=w[j][i]=INF;
            }
        }
        memset(vis,0,sizeof(vis));
    }
    int main(){
    
        while(scanf("%d%d",&T,&N)!=EOF){
    
            init();
            for(int i=1;i<=T;i++){
    
                int u,v,dw;
                scanf("%d%d%d",&u,&v,&dw);
                w[u][v]=w[v][u]=min(dw,w[u][v]);//去重
            }
            Dijkstra(N);
        }
        return 0;
    }
    

      

  • 相关阅读:
    element table 树形结构
    vue element模拟select 内容树形显示
    vue 不人为知的小技巧
    【转】 我的java web登录RSA加密
    【转】 java RSA加密解密实现
    【转】 Java 进行 RSA 加解密时不得不考虑到的那些事儿
    【转】 基于C#.NET的高端智能化网络爬虫 2
    【转】 基于C#.NET的高端智能化网络爬虫
    【转】黄聪:HtmlAgilityPack教程案例
    【转】 HtmlAgilityPack使用——XPath注意事项
  • 原文地址:https://www.cnblogs.com/chengsheng/p/4341396.html
Copyright © 2020-2023  润新知