• 学习Mahout(三)


    开发+运行第一个Mahout的程序

    代码:

    /**
     * Licensed to the Apache Software Foundation (ASF) under one or more
     * contributor license agreements.  See the NOTICE file distributed with
     * this work for additional information regarding copyright ownership.
     * The ASF licenses this file to You under the Apache License, Version 2.0
     * (the "License"); you may not use this file except in compliance with
     * the License.  You may obtain a copy of the License at
     *
     *     http://www.apache.org/licenses/LICENSE-2.0
     *
     * Unless required by applicable law or agreed to in writing, software
     * distributed under the License is distributed on an "AS IS" BASIS,
     * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     * See the License for the specific language governing permissions and
     * limitations under the License.
     */
    
    package chen.test.kmeans;
    
    import java.util.List;
    import java.util.Map;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.util.ToolRunner;
    import org.apache.mahout.clustering.Cluster;
    import org.apache.mahout.clustering.canopy.CanopyDriver;
    import org.apache.mahout.clustering.conversion.InputDriver;
    import org.apache.mahout.clustering.kmeans.KMeansDriver;
    import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
    import org.apache.mahout.common.AbstractJob;
    import org.apache.mahout.common.ClassUtils;
    import org.apache.mahout.common.HadoopUtil;
    import org.apache.mahout.common.commandline.DefaultOptionCreator;
    import org.apache.mahout.common.distance.DistanceMeasure;
    import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
    import org.apache.mahout.common.distance.SquaredEuclideanDistanceMeasure;
    import org.apache.mahout.utils.clustering.ClusterDumper;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    public final class TwoJob extends AbstractJob {
      
      private static final Logger log = LoggerFactory.getLogger(TwoJob.class);
      
      private static final String DIRECTORY_CONTAINING_CONVERTED_INPUT = "data";
      
      private TwoJob() {
      }
      
      public static void main(String[] args) throws Exception {
        if (args.length > 0) {
          log.info("Running with only user-supplied arguments");
          ToolRunner.run(new Configuration(), new TwoJob(), args);
        } else {
          log.info("Running with default arguments");
          Path output = new Path("output");
          Configuration conf = new Configuration();
          HadoopUtil.delete(conf, output);
          run(conf, new Path("testdata"), output, new EuclideanDistanceMeasure(), 2, 0.5, 10);
        }
      }
      
      @Override
      public int run(String[] args) throws Exception {
        addInputOption();
        addOutputOption();
        addOption(DefaultOptionCreator.distanceMeasureOption().create());
        addOption(DefaultOptionCreator.numClustersOption().create());
        addOption(DefaultOptionCreator.t1Option().create());
        addOption(DefaultOptionCreator.t2Option().create());
        addOption(DefaultOptionCreator.convergenceOption().create());
        addOption(DefaultOptionCreator.maxIterationsOption().create());
        addOption(DefaultOptionCreator.overwriteOption().create());
        
        Map<String,List<String>> argMap = parseArguments(args);
        if (argMap == null) {
          return -1;
        }
        
        Path input = getInputPath();
        Path output = getOutputPath();
        String measureClass = getOption(DefaultOptionCreator.DISTANCE_MEASURE_OPTION);
        if (measureClass == null) {
          measureClass = SquaredEuclideanDistanceMeasure.class.getName();
        }
        double convergenceDelta = Double.parseDouble(getOption(DefaultOptionCreator.CONVERGENCE_DELTA_OPTION));
        int maxIterations = Integer.parseInt(getOption(DefaultOptionCreator.MAX_ITERATIONS_OPTION));
        if (hasOption(DefaultOptionCreator.OVERWRITE_OPTION)) {
          HadoopUtil.delete(getConf(), output);
        }
        DistanceMeasure measure = ClassUtils.instantiateAs(measureClass, DistanceMeasure.class);
        if (hasOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION)) {
          int k = Integer.parseInt(getOption(DefaultOptionCreator.NUM_CLUSTERS_OPTION));
          run(getConf(), input, output, measure, k, convergenceDelta, maxIterations);
        } else {
          double t1 = Double.parseDouble(getOption(DefaultOptionCreator.T1_OPTION));
          double t2 = Double.parseDouble(getOption(DefaultOptionCreator.T2_OPTION));
          run(getConf(), input, output, measure, t1, t2, convergenceDelta, maxIterations);
        }
        return 0;
      }
      
      /**
       * Run the kmeans clustering job on an input dataset using the given the number of clusters k and iteration
       * parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
       * The clustered points will reside in the path <output>/clustered-points. By default, the job expects a file
       * containing equal length space delimited data that resides in a directory named "testdata", and writes output to a
       * directory named "output".
       * 
       * @param conf
       *          the Configuration to use
       * @param input
       *          the String denoting the input directory path
       * @param output
       *          the String denoting the output directory path
       * @param measure
       *          the DistanceMeasure to use
       * @param k
       *          the number of clusters in Kmeans
       * @param convergenceDelta
       *          the double convergence criteria for iterations
       * @param maxIterations
       *          the int maximum number of iterations
       */
      public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, int k,
          double convergenceDelta, int maxIterations) throws Exception {
        Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
        log.info("Preparing Input");
        InputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
        log.info("Running random seed to get initial clusters");
        Path clusters = new Path(output, "random-seeds");
        clusters = RandomSeedGenerator.buildRandom(conf, directoryContainingConvertedInput, clusters, k, measure);
        log.info("Running KMeans with k = {}", k);
        KMeansDriver.run(conf, directoryContainingConvertedInput, clusters, output, convergenceDelta,
            maxIterations, true, 0.0, false);
        // run ClusterDumper
        Path outGlob = new Path(output, "clusters-*-final");
        Path clusteredPoints = new Path(output,"clusteredPoints");
        log.info("Dumping out clusters from clusters: {} and clusteredPoints: {}", outGlob, clusteredPoints);
        ClusterDumper clusterDumper = new ClusterDumper(outGlob, clusteredPoints);
        
        //print the result
        clusterDumper.printClusters(null);
        
        
      }
      
      /**
       * Run the kmeans clustering job on an input dataset using the given distance measure, t1, t2 and iteration
       * parameters. All output data will be written to the output directory, which will be initially deleted if it exists.
       * The clustered points will reside in the path <output>/clustered-points. By default, the job expects the a file
       * containing synthetic_control.data as obtained from
       * http://archive.ics.uci.edu/ml/datasets/Synthetic+Control+Chart+Time+Series resides in a directory named "testdata",
       * and writes output to a directory named "output".
       * 
       * @param conf
       *          the Configuration to use
       * @param input
       *          the String denoting the input directory path
       * @param output
       *          the String denoting the output directory path
       * @param measure
       *          the DistanceMeasure to use
       * @param t1
       *          the canopy T1 threshold
       * @param t2
       *          the canopy T2 threshold
       * @param convergenceDelta
       *          the double convergence criteria for iterations
       * @param maxIterations
       *          the int maximum number of iterations
       */
      public static void run(Configuration conf, Path input, Path output, DistanceMeasure measure, double t1, double t2,
          double convergenceDelta, int maxIterations) throws Exception {
        Path directoryContainingConvertedInput = new Path(output, DIRECTORY_CONTAINING_CONVERTED_INPUT);
        log.info("Preparing Input");
        InputDriver.runJob(input, directoryContainingConvertedInput, "org.apache.mahout.math.RandomAccessSparseVector");
        log.info("Running Canopy to get initial clusters");
        Path canopyOutput = new Path(output, "canopies");
        CanopyDriver.run(new Configuration(), directoryContainingConvertedInput, canopyOutput, measure, t1, t2, false, 0.0,
            false);
        log.info("Running KMeans");
        KMeansDriver.run(conf, directoryContainingConvertedInput, new Path(canopyOutput, Cluster.INITIAL_CLUSTERS_DIR
            + "-final"), output, convergenceDelta, maxIterations, true, 0.0, false);
        // run ClusterDumper
        ClusterDumper clusterDumper = new ClusterDumper(new Path(output, "clusters-*-final"), new Path(output,
            "clusteredPoints"));
        clusterDumper.printClusters(null);
      }
    }

    上面的代码就是上一篇的example 例子,使用kmeans 实现聚集。

    build.xml代码

    <project name="mahout_test" default="jar">
    
       <property name="root.dir" value="." />
       <property name="src.dir" value="${root.dir}/src" />
       <property name="lib.dir" value="${root.dir}/lib" />
       <property name="build.dir" value="${root.dir}/build" />
       
       <target name="clean" depends="">
          <echo>root = ${root.dir}</echo>
          <delete dir="${build.dir}" />
          
          <mkdir dir="${build.dir}" />
    
       </target>
       
       <target name="build" depends="clean">
          <javac fork="true" debug="true" srcdir="${src.dir}" destdir="${build.dir}">
             <classpath>
                <fileset dir="${lib.dir}" includes="*.jar" />
             </classpath>
          </javac>
          
       </target>
       
       <target name="jar" depends="build">
             <mkdir dir="${build.dir}/lib" />
           <!--
             <copy file="${lib.dir}/mahout-core-0.9.jar" todir="${build.dir}/lib" />
             <copy file="${lib.dir}/mahout-integration-0.9.jar" todir="${build.dir}/lib" />
          <copy file="${lib.dir}/hadoop-core-1.2.1.jar" todir="${build.dir}/lib" />
           -->
           
           <copy file="${lib.dir}/mahout-examples-0.9-job.jar" todir="${build.dir}/lib" />
           <!--
           <copy file="${lib.dir}/mahout-integration-0.9.jar" todir="${build.dir}/lib" />
           -->
             <jar destfile="${root.dir}/mahout_test.jar" basedir="${build.dir}" >
             <manifest>
                <!--
                 <attribute name="Main-Class" value="chen/test/Job" />
                 -->
             </manifest>
             </jar>
       </target>
       
    </project>

    编译命令:

    ant -f build.xml

    编译后,它会在${root.dir}下生成一个 mahout_test.jar 的文件。

    编译程序依赖的jar包:mahout-core-0.9-job.jar、mahout-examples-0.9-job.jar、hadoop-core-1.2.1.jar

    其中mahout-core-0.9.jar 包只是使用了org.slf4j.Logger、org.slf4j.LoggerFactory 类

    你也可以依赖 hadoop lib 的 slf4j-api-1.4.3.jar 包来替换 mahout-core-0.9-job.jar 包。

    制作Mahout 程序的关键在与在生成 jar 包时,要包含mahout-examples-0.9-job.jar 包。否则hadoop jar **.jar 运行是会出错。

    <copy file="${lib.dir}/mahout-examples-0.9-job.jar" todir="${build.dir}/lib" />

    mahout-examples-0.9-job.jar 包里面的类和 mahout-core-0.9-job.jar 包的类有很多是重叠的,这个实在太坑了。如果同时加载两个jar 包,它就报错,说找不到相应的类。

    我被这个问题困扰了很久。

    而且编译时,不要指定Main Class ,否则也会出错,原因我也没有细究,知道的同学可以留言。

    运行命令:

    bin/hadoop jar /mnt/hgfs/mnt/chenfool/mahout_test.jar  chen.test.kmeans.TwoJob

    运行的环境和上一篇的要求相似,也需要再 HDFS 的 /user/${user}/testdata 目录下存在向量文件。

  • 相关阅读:
    数据库基础概念及操作语句
    多态、封装、继承的概念。
    排序有几种方式
    构造函数、复制构造函数和析构函数的特性
    String类的构造函数,析构函数、拷贝构造函数和赋值函数
    操作系统中进程调度策略
    静态数据成员和函数
    指针与引用的区别
    const的用法及它在C语言和C++中的不同
    反射性能优化
  • 原文地址:https://www.cnblogs.com/chenfool/p/3806601.html
Copyright © 2020-2023  润新知