前言
相信大部分开发人员,或多或少都看过或写过并发编程的代码。并发关键字除了Synchronized,还有另一大分支Atomic。如果大家没听过没用过先看基础篇
,如果听过用过,请滑至底部看进阶篇
,深入源码分析。
提出问题:int线程安全吗?
看过Synchronized相关文章的小伙伴应该知道其是不安全的,再次用代码应验下其不安全性:
运行结果:
在上面的例子中,我们定义一个初始值为0的静态变量number,再新建并运行两个线程让其各执行10万次的自增操作,如果他是线程安全的,应该两个线程执行后结果为20万,但是我们发现最终的结果是小于20万的,即说明他是不安全的。
在之前Synchronized那篇文章中说过,可以在number=number+1这句代码上下加Synchronized关键字实现线程安全。但是其对资源的开销较大,所以我们今天再看下另外一种实现线程安全的方法Atomic。
Atomic基础篇分界线
原子整数(基础类型)
整体介绍
Atomic是jdk提供的一系列包的总称,这个大家族包括原子整数(AtomicInteger,AtomicLong,AtomicBoolean),原子引用(AtomicReference,AtomicStampedReference,AtomicMarkableReference),原子数组(AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray),更新器(AtomicIntegerFieldUpdater,AtomicLongFieldUpdater,AtomicReferenceFieldUpdater)。
AtomicInteger
AtomicInteger,AtomicBoolean,AtomicLong三者功能类似,咱就以AtomicInteger为主分析原子类。
先看下有哪些API,及其他们具体啥功能:
执行结果:
对上述int类型的例子改进
我们可以看到运行结果是正确的20万,说明AtomicInteger的确保证了线程安全性,即在多线程的过程中,运行结果还是正确的。但是这存在一个ABA问题,下面将原子引用的时候再说,先立个flag。
源码分析
我们以incrementAndGet方法为例,看下底层是如何实现的,AtomicInteger类中的incrementAndGet方法调用了Unsafe类的getAndAddInt方法。
我们看下getAndAddInt方法,里面有个循环,直接值为compareAndSwapInt返回值为true,才结束循环。这里就不得不提CAS,这就是多线程安全性问题的解决方法。
CAS
线程1和线程2同事获取了主内存变量值0,线程1加1并写入主内存,现在主内存变量值1,线程2也加2并尝试写入主内存,这个时候是不能写入主内存的,因为会覆盖掉线程1的操作,具体过程如下图。
CAS是在线程2尝试写入内存的时候,通过比较并设置(CompareAndSet)发现现在主内存当前值为1,和他刚开始读取的值0不一样,所以他会放弃本次修改,重新读取主内存的最新值,然后再重试下线程2的具体逻辑操作,再次尝试写入主内存。如果这时候线程1,再次对主内存进行了修改,线程2发现现在主内存的值又和预期不一样,所以将放弃本次修改,再次读取主内存最新值,再次重试并尝试写入主内存。我们可以发现这是一个重复比较的过程,即直到和预期初始值一样,才会写入主内存,否则将一直读取重试的循环。这就是上面for循环的意义。
CAS的实现实际上利用了CPU指令来实现的,如果操作系统不支持CAS,还是会加锁的,如果操作系统支持CAS,则使用原子性的CPU指令。
原子引用
在日常使用中,我们不止对上述基本类型进行原子操作,而是需要对一些复杂类型进行原子操作,所以需要AtomicReference。
不安全实现
先看不安全的BigDecimal类型:
运行结果如下图,我们可以看到两个线程,自循环1000次加1操作,最终结果应该是2000,可是结果小于2000。
安全实现-使用CAS
运行结果如下:
ABA问题及解决
在上面CAS过程中,是通过值比较来知晓是不是能够更新成功,那如果线程1先加1再减1,这样主内存还是原来的值,即线程2还是可以更新成功的。但是这样逻辑错了
,线程1已经发生了修改,线程2不能直接更新成功。
代码:
我们看线程2对其进行了一系列操作,但是最后打印了还是true,表示可以更新成功的。这显然不对。
那我们可以使用AtomicStampedReference,为其添加一个版本号。线程1在刚开始读取主内存的时候,获取到值为0,版本为1,线程2也获取到这两个值,线程1进行加1,减1的操作的时候,版本各加1,现在主内存的值为0,版本为2,而线程2还拿着预计值为0,版本为1的数据尝试写入主内存,这个时候因版本不同而更新失败。具体我们用代码试下:
我们可以看到每次操作都会更新stamp(版本号),在最后对比的时候不仅比较值,还比较版本号,所以是不能更新成功的,false.
原子数组
AtomicIntegerArray,AtomicLongArray,AtomicReferenceArray三者类似,所以以AtomicIntegerArray为例,我们可以将下面AtomicIntegerArray看做是AtomicInteger类型的数组,其底层很类似,就不详细写了。
字段更新器和原子累加器比较简单,这里就不说了。
Atomic进阶篇分界线
LongAdder源码分析
LongAdder使用
LongAdder是jdk1.8之后新加的,那为什么要加他?这个问题,下面将回答,我们先看下如何使用。
我们可以看到LongAdder的使用和AtomicLong大致相同,使用两个线程Thread1,Thread2对number值各进行一万次的自增操作,最后的number是正确的两万。
与Atomic的对比优势
那问题来了,既然AtomicLong能够完成对多线程下的number进行线程安全的操作,那为什么还要LongAdder?我们先来段代码比较下,两个在结果都是正确的前提下,性能方面的差距。
上述代码对比了1个线程,10个线程,100个线程在进行100百次自增操作后,AtomicLong和LongAdder所花费的时间。通过打印语句,我们发现在最终number1和number2都正确的基础上,LongAdder花费的时间比AtomicLong少了一个量级。
源码分析
那为什么会导致这种情况,我们就要从源码层面分析。AtomicLong为什么效率低?因为如果线程数量一多,尤其在高并发的情况下,比如有100个线程同时想要对对象进行操作,肯定只有一个线程会获取到锁,其他99个线程可能空转,一直循环知道线程释放锁。如果该线程操作完毕释放了锁,其他99个线程再次竞争,也只有一个线程获取锁,另外98个线程还是空转,直到锁被释放。这样CAS操作会浪费大量资源在空转上,从而使得AtomicLong在线程数越来越多的情况下越来越慢。
AtomicLong是多个线程对同一个value值进行操作,导致多个线程自旋次数太多,性能降低。而LongAdder在无竞争的情况,跟AtomicLong一样,对同一个base进行操作,当出现竞争关系时则是采用化整为零的做法,从空间换时间,用一个数组cells,将一个value拆分进这个数组cells。多个线程需要同时对value进行操作时候,可以对线程id进行hash得到hash值,再根据hash值映射到这个数组cells的某个下标,再对该下标所对应的值进行自增操作。当所有线程操作完毕,将数组cells的所有值和无竞争值base都加起来作为最终结果。
我们先看下LongAdder里面的字段,发现其里面没有,主要是在其继承的Stripped64类中,有下面四个主要变量。
下面是add方法开始。
从LongAdder调用Stripped64的longAccumulate方法,主要是初始化cells
,cells的扩容
,多个线程同时命中一个cell的竞争
操作。
结语
结束了,撒花。这篇主要说了Atomic的一些使用,包括Atomic原子类(AtomicInteger,AtomicLong,AtomicBoolean),Atomic原子引用(AtomicReference,AtomicStampedReference),以及1.8之后LongAdder的优势,源码分析。过程还穿插了一些CAS,ABA问题引入和解决方式。
参考资料
Java多线程进阶(十七)—— J.U.C之atomic框架:LongAdder