Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 其可以应用在数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy用途广泛,可以用于数据挖掘、监测和自动化测试。
一、Scrapy架构
Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下
Scrapy主要包括了以下组件:
- 引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心)
- 调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
- 下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
- 爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面。就是我们写的执行程序
- 项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
- 下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
- 爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
- 调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。
Scrapy运行流程大概如下:
- 引擎从调度器中取出一个链接(URL)用于接下来的抓取
- 引擎把URL封装成一个请求(Request)传给下载器
- 下载器把资源下载下来,并封装成应答包(Response)
- 爬虫解析Response
- 解析出实体(Item),则交给实体管道进行进一步的处理
- 解析出的是链接(URL),则把URL交给调度器等待抓取
二、安装Scrapy
官方文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/intro/install.html#scrapy
使用pip安装:
pip install Scrapy
三、基本使用
1、创建项目
运行命令:
scrapy startproject your_project_name
自动创建目录:
project_name/ scrapy.cfg project_name/ __init__.py items.py pipelines.py settings.py spiders/ __init__.py
文件说明:
- scrapy.cfg 项目的配置信息,不是爬虫的配置文件。最重要的一条是指明settings.py。主要为Scrapy命令行工具提供一个基础的配置信息。(真正爬虫相关的配置信息在settings.py文件中)
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines 数据处理行为,如:一般结构化的数据持久化
- settings.py 配置文件,如:递归的层数、并发数,延迟下载等
- spiders 爬虫目录,如:创建文件,编写爬虫规则
注意:一般创建爬虫文件时,以网站域名命名
2、编写爬虫
在spiders目录中新建 xiaohua.py 文件
#!/usr/bin/env python # -*- coding:utf-8 -*- import scrapy class XiaoHuarSpider(scrapy.spiders.Spider): name = "xiaohua" # 定义的名字,随意,但必须定义。相当于你爬虫的名字 allowed_domains = ["xiaohuar.com"] # 限制域名,仅允许在这个域名下爬取 start_urls = [ "http://www.xiaohuar.com/hua/", # 起始url ] # 当运行命令使爬虫运行起来后,会自动运行start_urls里的url,将url里的内容下载下来。 # 将下载的数据封装给response def parse(self, response): # print(response, type(response)) # from scrapy.http.response.html import HtmlResponse # print(response.body_as_unicode()) current_url = response.url body = response.body unicode_body = response.body_as_unicode()
3、运行
进入project_name目录,运行命令
scrapy crawl spider_name --nolog
4、递归的访问
以上的爬虫仅仅是爬去初始页,而我们爬虫是需要源源不断的执行下去,直到所有的网页被执行完毕
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import scrapy
from scrapy.http import Request
from scrapy.selector import HtmlXPathSelector
import re
import urllib
import os
class XiaoHuarSpider(scrapy.spiders.Spider):
name = "xiaohuar" # 自定义爬虫的名字,当运行爬虫时需要此名称来指定运行哪个爬虫
allowed_domains = ["xiaohuar.com"] # 限制爬虫只在此域名下运行
start_urls = [
"http://www.xiaohuar.com/list-1-1.html",
]
# 起始的url。当爬虫运行时,会将起始url里的内容下载,并将其传给parse的response参数
def parse(self, response):
# 分析页面
# 找到页面中符合规则的内容(校花图片),保存
# 找到所有的a标签,再访问其他a标签,一层一层的搞下去、
# 将下载页面的数据传给HtmlXPathSelector方法去获取数据
hxs = HtmlXPathSelector(response)
# hxs就有了标签选择器的功能
# 如果url是 http://www.xiaohuar.com/list-1-d+.html这种规则的
if re.match('http://www.xiaohuar.com/list-1-d+.html', response.url):
# 获取相应标签里的数据
items = hxs.select('//div[@class="item_list infinite_scroll"]/div')
for i in range(len(items)):
src = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/a/img/@src' % i).extract()
name = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/span/text()' % i).extract()
school = hxs.select('//div[@class="item_list infinite_scroll"]/div[%d]//div[@class="img"]/div[@class="btns"]/a/text()' % i).extract()
if src:
ab_src = "http://www.xiaohuar.com" + src[0]
file_name = "%s_%s.jpg" % (school[0].encode('utf-8'), name[0].encode('utf-8'))
file_path = os.path.join("/Users/wupeiqi/PycharmProjects/beauty/pic", file_name)
urllib.urlretrieve(ab_src, file_path)
# 获取所有的url,继续访问,并在其中寻找相同的url
all_urls = hxs.select('//a/@href').extract()
for url in all_urls:
if url.startswith('http://www.xiaohuar.com/list-1-'):
yield Request(url, callback=self.parse) # 递归的去访问URL
以上代码将符合规则的页面中的图片保存在指定目录,并且在HTML源码中找到所有的其他 a 标签的href属性,从而“递归”的执行下去,直到所有的页面都被访问过为止。以上代码之所以可以进行“递归”的访问相关URL,关键在于parse方法使用了 yield Request对象。
注:可以修改settings.py 中的配置文件,以此来指定“递归”的层数,如: DEPTH_LIMIT = 1
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import scrapy
import hashlib
from tutorial.items import JinLuoSiItem
from scrapy.http import Request
from scrapy.selector import HtmlXPathSelector
class JinLuoSiSpider(scrapy.spiders.Spider):
count = 0
url_set = set()
name = "jluosi"
domain = 'http://www.jluosi.com'
allowed_domains = ["jluosi.com"]
start_urls = [
"http://www.jluosi.com:80/ec/goodsDetail.action?jls=QjRDNEIzMzAzOEZFNEE3NQ==",
]
def parse(self, response):
md5_obj = hashlib.md5()
md5_obj.update(response.url)
md5_url = md5_obj.hexdigest()
if md5_url in JinLuoSiSpider.url_set:
pass
else:
JinLuoSiSpider.url_set.add(md5_url)
hxs = HtmlXPathSelector(response)
if response.url.startswith('http://www.jluosi.com:80/ec/goodsDetail.action'):
item = JinLuoSiItem()
item['company'] = hxs.select('//div[@class="ShopAddress"]/ul/li[1]/text()').extract()
item['link'] = hxs.select('//div[@class="ShopAddress"]/ul/li[2]/text()').extract()
item['qq'] = hxs.select('//div[@class="ShopAddress"]//a/@href').re('.*uin=(?P<qq>d*)&')
item['address'] = hxs.select('//div[@class="ShopAddress"]/ul/li[4]/text()').extract()
item['title'] = hxs.select('//h1[@class="goodsDetail_goodsName"]/text()').extract()
item['unit'] = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[1]//td[3]/text()').extract()
product_list = []
product_tr = hxs.select('//table[@class="R_WebDetail_content_tab"]//tr')
for i in range(2,len(product_tr)):
temp = {
'standard':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[2]/text()' %i).extract()[0].strip(),
'price':hxs.select('//table[@class="R_WebDetail_content_tab"]//tr[%d]//td[3]/text()' %i).extract()[0].strip(),
}
product_list.append(temp)
item['product_list'] = product_list
yield item
current_page_urls = hxs.select('//a/@href').extract()
for i in range(len(current_page_urls)):
url = current_page_urls[i]
if url.startswith('http://www.jluosi.com'):
url_ab = url
yield Request(url_ab, callback=self.parse)
更多选择器规则:http://scrapy-chs.readthedocs.io/zh_CN/latest/topics/selectors.html
5、格式化处理
上述实例只是简单的图片处理,所以在parse方法中直接处理。如果对于想要获取更多的数据(获取页面的价格、商品名称、QQ等),则可以利用Scrapy的items将数据格式化,然后统一交由pipelines来处理。
在items.py中创建类:
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy class JieYiCaiItem(scrapy.Item): company = scrapy.Field() title = scrapy.Field() qq = scrapy.Field() info = scrapy.Field() more = scrapy.Field()
上述定义模板,以后对于从请求的源码中获取的数据按照此结构来获取,所以在spider中需要有一下操作:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import scrapy
import hashlib
from beauty.items import JieYiCaiItem # 导入自定义的item
from scrapy.http import Request
from scrapy.selector import HtmlXPathSelector
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor
class JieYiCaiSpider(scrapy.spiders.Spider):
count = 0
url_set = set()
name = "jieyicai"
domain = 'http://www.jieyicai.com'
allowed_domains = ["jieyicai.com"]
start_urls = [
"http://www.jieyicai.com",
]
rules = [
#下面是符合规则的网址,但是不抓取内容,只是提取该页的链接(这里网址是虚构的,实际使用时请替换)
#Rule(SgmlLinkExtractor(allow=(r'http://test_url/test?page_index=d+'))),
#下面是符合规则的网址,提取内容,(这里网址是虚构的,实际使用时请替换)
#Rule(LinkExtractor(allow=(r'http://www.jieyicai.com/Product/Detail.aspx?pid=d+')), callback="parse"),
]
def parse(self, response):
md5_obj = hashlib.md5()
md5_obj.update(response.url)
md5_url = md5_obj.hexdigest()
if md5_url in JieYiCaiSpider.url_set:
pass
else:
JieYiCaiSpider.url_set.add(md5_url)
hxs = HtmlXPathSelector(response)
if response.url.startswith('http://www.jieyicai.com/Product/Detail.aspx'):
item = JieYiCaiItem()
item['company'] = hxs.select('//span[@class="username g-fs-14"]/text()').extract()
item['qq'] = hxs.select('//span[@class="g-left bor1qq"]/a/@href').re('.*uin=(?P<qq>d*)&')
item['info'] = hxs.select('//div[@class="padd20 bor1 comard"]/text()').extract()
item['more'] = hxs.select('//li[@class="style4"]/a/@href').extract()
item['title'] = hxs.select('//div[@class="g-left prodetail-text"]/h2/text()').extract()
yield item # 自动将该对象交个pipelines的类来处理
current_page_urls = hxs.select('//a/@href').extract()
for i in range(len(current_page_urls)):
url = current_page_urls[i]
if url.startswith('/'):
url_ab = JieYiCaiSpider.domain + url
yield Request(url_ab, callback=self.parse)
此处代码的关键在于:
- 将获取的数据封装在了Item对象中
- yield Item对象 (一旦parse中执行yield Item对象,则自动将该对象交个pipelines的类来处理)
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: http://doc.scrapy.org/en/latest/topics/item-pipeline.html
import json
from twisted.enterprise import adbapi
import MySQLdb.cursors
import re
mobile_re = re.compile(r'(13[0-9]|15[012356789]|17[678]|18[0-9]|14[57])[0-9]{8}')
phone_re = re.compile(r'(d+-d+|d+)')
class JsonPipeline(object):
def __init__(self):
self.file = open('/Users/wupeiqi/PycharmProjects/beauty/beauty/jieyicai.json', 'wb')
def process_item(self, item, spider):
line = "%s %s
" % (item['company'][0].encode('utf-8'), item['title'][0].encode('utf-8'))
self.file.write(line)
return item
class DBPipeline(object):
def __init__(self):
self.db_pool = adbapi.ConnectionPool('MySQLdb',
db='DbCenter',
user='root',
passwd='123',
cursorclass=MySQLdb.cursors.DictCursor,
use_unicode=True)
def process_item(self, item, spider):
query = self.db_pool.runInteraction(self._conditional_insert, item)
query.addErrback(self.handle_error)
return item
def _conditional_insert(self, tx, item):
tx.execute("select nid from company where company = %s", (item['company'][0], ))
result = tx.fetchone()
if result:
pass
else:
phone_obj = phone_re.search(item['info'][0].strip())
phone = phone_obj.group() if phone_obj else ' '
mobile_obj = mobile_re.search(item['info'][1].strip())
mobile = mobile_obj.group() if mobile_obj else ' '
values = (
item['company'][0],
item['qq'][0],
phone,
mobile,
item['info'][2].strip(),
item['more'][0])
tx.execute("insert into company(company,qq,phone,mobile,address,more) values(%s,%s,%s,%s,%s,%s)", values)
def handle_error(self, e):
print 'error',e
上面的pipelines中有多个类,此时应该告诉settings需要执行的顺序:
在settings.py中做如下配置:
ITEM_PIPELINES = { 'beauty.pipelines.DBPipeline': 300, 'beauty.pipelines.JsonPipeline': 100, } # 每行后面的整型值,确定了他们运行的顺序,item按数字从低到高的顺序,通过pipeline,通常将这些数字定义在0-1000范围内。