• day3 线性回归


    我通过三个实例代码的学习了解到了线性回归的大致概念

    一、实例一

    import numpy as np
    import tensorflow.compat.v1 as tf
    import matplotlib.pyplot as plt
    tf.disable_v2_behavior()
    # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
    num_points = 1000
    vectors_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
        vectors_set.append([x1, y1])
    
    # 生成一些样本
    x_data = [v[0] for v in vectors_set]
    y_data = [v[1] for v in vectors_set]
    
    plt.scatter(x_data,y_data,c='r')
    plt.show()

    # 生成1维的W矩阵,取值是[-1,1]之间的随机数类似于[1,0.5,-0.5,0.6,0.7,0.8,0.2,0.4]
    W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
    # 生成1维的b矩阵,初始值是0
    b = tf.Variable(tf.zeros([1]), name='b')
    # 经过计算得出预估值y(矩阵运算)
    y = W * x_data + b
    
    # 以预估值y和实际值y_data之间的均方误差作为损失
    loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
    # 采用梯度下降法来优化参数
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    # 训练的过程就是最小化这个误差值
    train = optimizer.minimize(loss, name='train')
    
    sess = tf.Session()
    
    init = tf.global_variables_initializer()
    sess.run(init)
    
    # 初始化的W和b是多少
    print ("W =", sess.run(W), "b=", sess.run(b), "loss =", sess.run(loss))
    # 执行20次训练
    for step in range(30):
        sess.run(train)
        # 输出训练好的W和b
        print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
    writer = tf.summary.FileWriter("./tmp", sess.graph)

    plt.scatter(x_data,y_data,c='r')
    plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
    plt.show()

    我这段实例代码的大致理解是:

    1、创建训练数据集:随机生成一些围绕在y=0.1x+0.3

    2、设置模型的初始权重:因为我们知道模型是线性的也就是y=wx+b,所以去初始化w、b

    3、构造线性回归模型(这个代码中也就是计算预估值y):因为我们知道模型是线性的也就是y=wx+b,前面也初始化w、b了,那就能根据输入的x_data得到该模型求出预估值y

    4、求损失函数,即均方差

    5、使用梯度下降法得到损失的最小值,即最优解

    6、开始训练模型、得出模型的代价函数、可视化

     二、实例二

    import tensorflow.compat.v1 as tf
    import numpy as np
    import matplotlib.pyplot as plt
    import os
    tf.disable_v2_behavior()
    os.environ["CUDA_VISIBLE_DEVICES"]="0"
    learning_rate=0.01
    training_epochs=1000
    display_step=50
    #生成样本
    train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples=train_X.shape[0]
    X=tf.placeholder("float")
    Y=tf.placeholder("float")
    # 生成1维的W矩阵,取值是[-1,1]之间的随机数类似于[1,4,5,6,7,8,2,4]
    W=tf.Variable(np.random.randn(),name="weight")
    b=tf.Variable(np.random.randn(),name='bias')
    #tf.multiply将两个矩阵中对应元素各自相乘,tf.add将两个矩阵中对应元素各自相加
    pred=tf.add(tf.multiply(X,W),b)
    #求损失函数
    cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
    #梯度下降优化
    optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    init =tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(training_epochs):
            for (x,y) in zip(train_X,train_Y):
                sess.run(optimizer,feed_dict={X:x,Y:y})
            if (epoch+1) % display_step==0:
                c=sess.run(cost,feed_dict={X:train_X,Y:train_Y})
                print("Epoch:" ,'%04d' %(epoch+1),"cost=","{:.9f}".format(c),"W=",sess.run(W),"b=",sess.run(b))
        print("Optimization Finished!")
        plt.plot(train_X,train_Y,'ro',label='Original data')
        plt.plot(train_X,sess.run(W)*train_X+sess.run(b),label="Fitting line")
        plt.legend()
        plt.show()

    实例二和实例一的大致思路是一样的,只是创建训练数据集、建立模型、开始训练模型的方法不一样

    三、实例三

    import numpy as np
    import pandas as pd
    import tensorflow.compat.v1 as tf
    import matplotlib.pyplot as plt
    tf.disable_v2_behavior()
    # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
    num_points = 1000
    vectors_set = []
    for i in range(num_points):
        x1 = np.random.normal(0.0, 0.55)
        y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
        vectors_set.append([x1, y1])
    
    # 生成一些样本
    x_data = [v[0] for v in vectors_set]
    y_data = [v[1] for v in vectors_set]
    
    plt.scatter(x_data,y_data,c='r')
    plt.show()
    model = tf.keras.Sequential()
    model.add(tf.keras.layers.Dense(1, input_shape=(1,)))
    model.summary()

    model.compile(optimizer='adam',
                  loss='mse'
    )
    history=model.fit(x_data,y_data,epochs=500)

    model.predict(pd.Series([20,10,50]))

  • 相关阅读:
    C 语言编程 — 基本语法
    C 语言编程 — 函数
    C 语言编程 — 逻辑控制语句
    C 语言编程 — 运算符
    C 语言编程 — 变量与常量
    C 语言编程 — 基本数据类型
    程序编译流程与 GCC 编译器
    OpenNESS NTS 的前世今生
    通过 OpenAPI 部署 Nbsf_Management API Service
    PCF 的 Npcf_PolicyAuthorization 服务化接口
  • 原文地址:https://www.cnblogs.com/chenaiiu/p/14253435.html
Copyright © 2020-2023  润新知