Problem Description
Uncle Mao is a wonderful ACMER. One day he met an easy problem, but Uncle Mao was so lazy that he left the problem to you. I hope you can give him a solution.
Given a string s, we define a substring that happens exactly k times as an important string, and you need to find out how many substrings which are important strings.
Given a string s, we define a substring that happens exactly k times as an important string, and you need to find out how many substrings which are important strings.
Input
The first line contains an integer T (T≤100) implying the number of test cases.
For each test case, there are two lines:
the first line contains an integer k (k≥1) which is described above;
the second line contain a string s (length(s)≤105).
It's guaranteed that ∑length(s)≤2∗106.
For each test case, there are two lines:
the first line contains an integer k (k≥1) which is described above;
the second line contain a string s (length(s)≤105).
It's guaranteed that ∑length(s)≤2∗106.
Output
For each test case, print the number of the important substrings in a line.
Sample Input
2
2
abcabc
3
abcabcabcabc
Sample Output
6
9
题意:有一个字符串s,求其中恰好出现k次的子串有多少个?
思路:后缀数组,通过后缀数组算法可以知道每个后缀的排名,如果有某个子串恰好出现k次,那么必定有k个对应的后缀 即这个子串是这k个后缀串的前缀,那么这k个后缀串的排名一定是连续的,所以我们按排名从1~len(s)依次开始 取连续k个后缀串,可以根据height[]数组快速算出当前这k个后缀串的最大公共前缀长度len,那么长为1到len的前缀子串,这k个串都含有,设当前开始k个串为 i到i+k-1 ,那么如果子串长过短,可能 i-1 或 i+k 这个串也含有相应的子串,所以计算出 i 和 i-1 串,i+k和i+k-1的最大公共前缀长为m,那么之前取的子串长必须大于m才能保证 i-1 和 i+k 不含有相应的子串,只有i~i+k-1这k个串含有相应的子串。
代码如下:
#include <iostream> #include <algorithm> #include <cstdio> #include <cstring> #include <cmath> using namespace std; typedef long long LL; const int N=1e5+5; char s[N]; int k; int wa[N],wb[N],wv[N],wss[N]; int sa[N],ran[N],height[N]; int f[N][20]; int cmp(int *r,int a,int b,int l) { return r[a]==r[b]&&r[a+l]==r[b+l]; } void da(char *r,int *sa,int n,int m) { int i,j,p,*x=wa,*y=wb,*t; for(i=0; i<m; i++) wss[i]=0; for(i=0; i<n; i++) wss[x[i]=(int)r[i]]++; for(i=1; i<m; i++) wss[i]+=wss[i-1]; for(i=n-1; i>=0; i--) sa[--wss[x[i]]]=i; for(j=1,p=1; p<n; j*=2,m=p) { for(p=0,i=n-j; i<n; i++) y[p++]=i; for(i=0; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j; for(i=0; i<n; i++) wv[i]=x[y[i]]; for(i=0; i<m; i++) wss[i]=0; for(i=0; i<n; i++) wss[wv[i]]++; for(i=1; i<m; i++) wss[i]+=wss[i-1]; for(i=n-1; i>=0; i--) sa[--wss[wv[i]]]=y[i]; for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1; i<n; i++) x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++; } return; } void callheight(char *r,int *sa,int n) { int i,j,k=0; for(i=1;i<=n;i++) ran[sa[i]]=i; for(i=0;i<n;height[ran[i++]]=k) for(k?k--:0,j=sa[ran[i]-1];r[i+k]==r[j+k];k++); return ; } void init(int len) { for(int i=1;i<=len;i++) f[i][0]=height[i]; for(int s=1;(1<<s)<=len;s++) { int tmp=(1<<s); for(int i=1;i+tmp-1<=len;i++) { f[i][s]=min(f[i][s-1],f[i+tmp/2][s-1]); } } } int cal(int l,int r) { int len=log2(r-l+1); int ans=min(f[l][len],f[r-(1<<len)+1][len]); return ans; } int main() { int T; cin>>T; while(T--) { scanf("%d%s",&k,s); int len=strlen(s); da(s,sa,len+1,130); callheight(s,sa,len); init(len); int ans=0; for(int i=1;i+k-1<=len;i++) { int j=i+k-1; int tmp=height[i]; if(j+1<=len) tmp=max(tmp,height[j+1]); int x; if(k!=1) { x=cal(i+1,j); } else x=len-sa[i]; ans+=max(0,x-tmp); } printf("%d ",ans); } return 0; }