• hdu 6068--Classic Quotation(kmp+DP)


    题目链接

    Problem Description
    When online chatting, we can save what somebody said to form his ''Classic Quotation''. Little Q does this, too. What's more? He even changes the original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S will be ''I am SB.'', which makes it funnier.



    After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S very often.

    Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S if he choose every possible pair of (i,j)(1iL,Rjn) equiprobably? Your task is to find the answer E, and report E×L×(nR+1) to him.

    Note : When counting occurrences, T can overlap with each other.
     
    Input
    The first line of the input contains an integer C(1C15), denoting the number of test cases.

    In each test case, there are 3 integers n,m,k(1n50000,1m100,1k50000) in the first line, denoting the length of S, the length of T and the number of questions.

    In the next line, there is a string S consists of n lower-case English letters.

    Then in the next line, there is a string T consists of m lower-case English letters.

    In the following k lines, there are 2 integers L,R(1L<Rn) in each line, denoting a question.
     
    Output
    For each question, print a single line containing an integer, denoting the answer.
     
    Sample Input
    1
    8 5 4
    iamnotsb
    iamsb
    4 7
    3 7
    3 8
    2 7
     
    Sample Output
    1
    1
    0
    0
     
     
    题意:有小写字符串s和t,现在在s中去掉连续子串后,剩余s[1…i] 和 s[j…n] 连在一起构成一个新s串,计算t串在新s串中出现了几次。现在q次询问,每次输入L和R,去掉连续子串后s[1…i]和s[j...n]拼接成新串s,1<=i<=L && R<=j<=n,求t串在这些新串中出现的次数和?
     
    思路:
              
     
     
    代码如下:
    #include <iostream>
    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    typedef long long LL;
    const int N=50005;
    char s[N],t[105];
    int pre[N],num[N][105];
    int suf[N][105];
    int next1[105];
    int next2[105][30],flag[105][30];
    int n,m,q;
    
    void KMP()
    {
        next1[0]=0;
        for(int i=1,k=0; i<m; ++i)
        {
            while(k>0 && t[i]!=t[k]) k=next1[k-1];
            if(t[i]==t[k]) k++;
            next1[i]=k;
        }
    }
    
    void cal()
    {
        memset(flag,0,sizeof(flag));
        for(int i=0;i<m;i++)
        {
            for(int j=0;j<26;j++)
            {
                char x=j+'a';
                int k=i;
                while(k>0 && t[k]!=x) k=next1[k-1];
                if(t[k]==x) k++;
                next2[i][j]=k;
                if(k==m) flag[i][j]=1,next2[i][j]=next1[m-1];
            }
        }
    
        memset(pre,0,sizeof(pre));
        memset(num,0,sizeof(num));
        for(int i=0,k=0;i<n;i++)
        {
            while(k>0&&t[k]!=s[i]) k=next1[k-1];
            if(t[k]==s[i]) k++;
            if(k==m) pre[i]++,num[i][next1[m-1]]=1;
            else num[i][k]=1;
            pre[i]+=pre[i-1];
        }
        for(int i=1;i<n;i++)
            for(int j=0;j<m;j++)
                num[i][j]+=num[i-1][j];
        for(int i=1;i<n;i++) pre[i]+=pre[i-1];///前缀和;
    
        memset(suf,0,sizeof(suf));
        for(int i=n-1;i>=0;i--)
        {
            int x=s[i]-'a';
            for(int j=0;j<m;j++)
                suf[i][j]=flag[j][x]+suf[i+1][next2[j][x]];
        }
        for(int j=0;j<m;j++) ///后缀和;
           for(int i=n-1;i>=0;i--)
              suf[i][j]+=suf[i+1][j];
    }
    
    int main()
    {
        int T; cin>>T;
        while(T--)
        {
            scanf("%d%d%d",&n,&m,&q);
            scanf("%s%s",s,t);
            KMP();
            cal();
            while(q--)
            {
                int L,R; scanf("%d%d",&L,&R);
                LL ans=(LL)pre[L-1]*(LL)(n-R+1);
                for(int i=0;i<m;i++)
                {
                    ans+=(LL)num[L-1][i]*(LL)suf[R-1][i];
                }
                printf("%lld
    ",ans);
            }
        }
        return 0;
    }
    /**
    2342
    8 3 3463
    abcababc
    abc
    8 3 234
    aabbcccbbb
    aaabb
    
    4
    10 3 23
    ababcababc
    aba
    3 5
    */
     
  • 相关阅读:
    Java接口自动化测试实战001----get、post方法实现与封装
    临近年关,两个磁盘占满引起的服务下线
    Abp小试牛刀之 图片上传
    Abp vNext异常处理的缺陷/改造方案
    Oh my God, Swagger API文档竟然可以这样写?
    【C#】DockPanelSuite 中 DockState.Document 状态下子窗体控件不显示的解决方案
    环境系列——cygwin启动flink
    环境系列——window10环境下编译Flink源码编译
    弱肉强食——《哆啦A梦:大雄的新恐龙》观后感
    bilibili插件推荐
  • 原文地址:https://www.cnblogs.com/chen9510/p/7486016.html
Copyright © 2020-2023  润新知