• HDU 5475(2015 ICPC上海站网络赛)--- An easy problem(线段树点修改)


    题目链接

    http://acm.hdu.edu.cn/showproblem.php?pid=5475

    Problem Description
    One day, a useless calculator was being built by Kuros. Let's assume that number X is showed on the screen of calculator. At first, X = 1. This calculator only supports two types of operation.
    1. multiply X with a number.
    2. divide X with a number which was multiplied before.
    After each operation, please output the number X modulo M.
     
    Input
    The first line is an integer T(1T10), indicating the number of test cases.
    For each test case, the first line are two integers Q and M. Q is the number of operations and M is described above. (1Q105,1M109)
    The next Q lines, each line starts with an integer x indicating the type of operation.
    if x is 1, an integer y is given, indicating the number to multiply. (0<y109)
    if x is 2, an integer n is given. The calculator will divide the number which is multiplied in the nth operation. (the nth operation must be a type 1 operation.)

    It's guaranteed that in type 2 operation, there won't be two same n.
     
    Output
    For each test case, the first line, please output "Case #x:" and x is the id of the test cases starting from 1.
    Then Q lines follow, each line please output an answer showed by the calculator.
     
    Sample Input
    1
    10 1000000000
    1 2
    2 1
    1 2
    1 10
    2 3
    2 4
    1 6
    1 7
    1 12
    2 7
     
    Sample Output
    Case #1:
    2
    1
    2
    20
    10
    1
    6
    42
    504
    84
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5932 5931 5930 5929 5928 
     
    题意:输入Q和M,然后输入Q次操作,每次操作为一行数据op和s,定义一个数x=1。如果op=1表示x=x*s%mod 输出x,如果op=2 表示x除以第s次操作的s(第s次操作的op一定为1),输出x;
     
    思路:线段树点修改,每次操作时,修改那个点,复杂度为log(n),如果op=1,那么修改为s,如果op=2,那么第s次操作对应的点修改为1;
     
    代码如下:
    #include <iostream>
    #include <algorithm>
    #include <stdio.h>
    #include <cstring>
    #include <cmath>
    #include <map>
    #include <bitset>
    using namespace std;
    typedef long long LL;
    LL mod;
    LL tr[4*100005];
    int p;
    LL add;
    void build(int l,int r,int i)
    {
        if(l==r) {
            tr[i]=1;
            return ;
        }
        int mid=(l+r)>>1;
        build(l,mid,i<<1);
        build(mid+1,r,i<<1|1);
        tr[i]=1;
    }
    
    void update(int l,int r,int i)
    {
        if(l==r) { tr[i]=add; return ; }
        int mid=(l+r)>>1;
        if(p<=mid) update(l,mid,i<<1);
        else update(mid+1,r,i<<1|1);
        tr[i]=(tr[i<<1]*tr[i<<1|1])%mod;
    }
    
    int main()
    {
        int T,Q,Case=1;
        cin>>T;
        while(T--)
        {
            scanf("%d%lld",&Q,&mod);
            printf("Case #%d:
    ",Case++);
            build(1,Q,1);
            for(int i=1;i<=Q;i++)
            {
                int x;
                LL y;
                scanf("%d%lld",&x,&y);
                if(x==1) { p=i; add=y; }
                else { p=y; add=1; }
                update(1,Q,1);
                printf("%lld
    ",tr[1]);
            }
        }
        return 0;
    }
  • 相关阅读:
    数据结构-索引
    CAS自旋volatile变量
    深入理解AQS
    EL表达式
    JSTL 核心标签库 使用
    JSP 九个隐含JSP对象
    jsp基本语法总结
    Commons FileUpLoad 两种上传方式解
    Servlet 异常处理
    Servlet 过滤器 Filter
  • 原文地址:https://www.cnblogs.com/chen9510/p/5998358.html
Copyright © 2020-2023  润新知