• 回文串---Hotaru's problem


    HDU   5371

    Description

    Hotaru Ichijou recently is addicated to math problems. Now she is playing with N-sequence. 
    Let's define N-sequence, which is composed with three parts and satisfied with the following condition: 
    1. the first part is the same as the thrid part, 
    2. the first part and the second part are symmetrical. 
    for example, the sequence 2,3,4,4,3,2,2,3,4 is a N-sequence, which the first part 2,3,4 is the same as the thrid part 2,3,4, the first part 2,3,4 and the second part 4,3,2 are symmetrical. 

    Give you n positive intergers, your task is to find the largest continuous sub-sequence, which is N-sequence. 
     

    Input

    There are multiple test cases. The first line of input contains an integer T(T<=20), indicating the number of test cases. 

    For each test case: 

    the first line of input contains a positive integer N(1<=N<=100000), the length of a given sequence 

    the second line includes N non-negative integers ,each interger is no larger than  , descripting a sequence. 
     

    Output

    Each case contains only one line. Each line should start with “Case #i: ”,with i implying the case number, followed by a integer, the largest length of N-sequence. 

    We guarantee that the sum of all answers is less than 800000. 
     

    Sample Input

    1 10 2 3 4 4 3 2 2 3 4 4
     

    Sample Output

    Case #1: 9
     

    Source

    2015 Multi-University Training Contest 7
     
    题意:给一个长为n的序列,求最长连续子序列的长度,这个子序列满足这样的特点:这个子序列由前到后分为长度相等的三部分,第一部分与第二部分对称,第一部分与第三部分相同;
     
    思路:先利用回文串算法求出以第i个字符为中心的最大回文长度,然后在这个回文串的最右边的字符出开始判断,如果以这个字符为中心的回文串长度小于前面那个字符的回文串长度,这个比较的字符左移,再次比较,找到以第i个字符为中心的最大长度好,将length个字符遍历一遍就可找到最大的长度。直接这样求解会超时,可以在右边的那个比较的字符向左移动的过程中加上一些判断条件,减少无用的计算。
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    const int N=110005;
    int p[2*N];
    int s[2*N],str[2*N];
    int n;
    
    void kp()
    {
        int mx=0;
        int id;
        for(int i=1;i<n;i++)
        {
            if(mx>i)
                p[i]=min(p[2*id-i],p[id]+id-i);
            else
                p[i]=1;
            for( ;i+p[i]<n;)
            {
                if(str[i+p[i]]==str[i-p[i]])
                {
                    if(str[i+p[i]]==0) p[i]++;
                    else
                    {
                        p[i]+=2;
                    }
                }
                else break;
            }
            if(p[i]+i>mx)
            {
                mx=p[i]+i;
                id=i;
            }
        }
    }
    
    void init()
    {
        str[0]=0;
        str[1]=0;
        for(int i=0; i<n; i++)
        {
            str[i*2+2]=s[i];
            str[i*2+3]=0;
        }
        n=n*2+2;
    }
    
    int main()
    {
        int T,Case=1;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            for(int i=0;i<n;i++)
            scanf("%d",&s[i]);
            if(n<3)
            {
                printf("%d",0);
            }
            init();
            kp();
            ///cout<<p[11]<<"++"<<p[15]<<endl;
            int sum=0;
            for(int i=3;i<=n-3;i=i+2)
            {
                if(p[i]-1<=sum/3*2) continue;
                int t=p[i];
                for(int j=t-1;j>=2;j=j-2)
                {
                    if(j<=sum/3*2) break;
                    if(i+j>n) continue;///可能这儿超时;
                    if(p[i+j]-1>=j)
                    {
                        sum=max(sum,j/2*3);
                        break;
                    }
                }
            }
            printf("Case #%d: %d
    ",Case++,sum);
        }
        return 0;
    }
  • 相关阅读:
    Qt开发技术:QCharts(二)QCharts折线图介绍、Demo以及代码详解
    OpenCV开发笔记(六十八):红胖子8分钟带你使用特征点Flann最邻近差值匹配识别(图文并茂+浅显易懂+程序源码)
    keepalived+MySQL实现高可用
    使用ProxySQL实现MySQL Group Replication的故障转移、读写分离(二)
    使用ProxySQL实现MySQL Group Replication的故障转移、读写分离(一)
    Oracle Dataguard故障转移(failover)操作
    Oracle DataGuard故障转移(failover)后使用RMAN还原失败的主库
    MySQL组复制MGR(四)-- 单主模式与多主模式
    MySQL组复制MGR(三)-- 组复制监控
    MySQL组复制MGR(二)-- 组复制搭建
  • 原文地址:https://www.cnblogs.com/chen9510/p/5409852.html
Copyright © 2020-2023  润新知