网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=67090#problem/B
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
解题思路: 以i,j为循环层,temp[k]表示从i行到j行第k列的和,然后求temp[]数组序列的最大连续子列的最大和。
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <stack> using namespace std; #define INF 0x3f3f3f3f int a[110][110]; int temp[110]; int main() { int n; int MAX; while(scanf("%d",&n)!=EOF) { MAX=-1*INF; for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%d",&a[i][j]); for(int i=0;i<n;i++) { memset(temp,0,sizeof(temp)); for(int j=i;j<n;j++) { for(int k=0;k<n;k++) temp[k]+=a[j][k];//从i行到j行的每一列的和; int s=0; for(int k=0;k<n;k++)//数组temp[]的最大连续子列的最大和; { if(s<0) s=0; s=s+temp[k]; if(MAX<s) MAX=s; } } } printf("%d ",MAX); } return 0; }