• 堆积木块的最大高度


    题目网址: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=68966#problem/C

    Description

    A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food. 

    The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. 

    They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 

    Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks. 
     

    Input

    The input file will contain one or more test cases. The first line of each test case contains an integer n, 
    representing the number of different blocks in the following data set. The maximum value for n is 30. 
    Each of the next n lines contains three integers representing the values xi, yi and zi. 
    Input is terminated by a value of zero (0) for n. 
     

    Output

    For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 
     

    Sample Input

    1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
     

    Sample Output

    Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
     
    解题思路:
     
     
    将木块以长从大到小排序,将dp[]值表示为从上到下按规则堆积木块的最大高度 dp[i]=dp[j]+b[i].height;
     
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    using namespace std;
    struct node
    {
        int lth,wth,hth;
    }b[100];
    int cmp(node x,node y)
    {
        if(x.lth!=y.lth) return x.lth>y.lth;
        else return x.wth>y.wth;
    }
    
    int main()
    {
        int n,a[3],dp[100],k,Case=1;
        while(scanf("%d",&n)&&n)
        {
            k=0;
            for(int i=0;i<n;i++)
            {
                scanf("%d%d%d",&a[0],&a[1],&a[2]);
                sort(a,a+3);
                b[k].lth=a[2];
                b[k].wth=a[1];
                b[k++].hth=a[0];
                b[k].lth=a[2];
                b[k].wth=a[0];
                b[k++].hth=a[1];
                b[k].lth=a[1];
                b[k].wth=a[0];
                b[k++].hth=a[2];
            }
            sort(b,b+k,cmp);
            for(int i=0;i<k;i++)
            dp[i]=b[i].hth;
            for(int i=k-2;i>=0;i--)
            {
                for(int j=i+1;j<k;j++)
                {
                    if(b[i].lth>b[j].lth&&b[i].wth>b[j].wth)
                    if(dp[i]<b[i].hth+dp[j])
                    dp[i]=dp[j]+b[i].hth;
                }
            }
            sort(dp,dp+k);
            printf("Case %d: maximum height = %d
    ",Case++,dp[k-1]);
        }
        return 0;
    }
     
     
  • 相关阅读:
    微信支付(APP支付)-服务端开发(一)
    C#去除HTML标签
    监视EntityFramework中的sql流转你需要知道的三种方式Log,SqlServerProfile, EFProfile
    SQL总结(六)触发器
    sql中索引不会被用到的几种情况
    Sql Server参数化查询之where in和like实现详解
    Sql Server查询性能优化之不可小觑的书签查找
    浅析Sql Server参数化查询
    Sql Server查询性能优化之走出索引的误区
    IScroll在某些win10版本下的奇怪问题
  • 原文地址:https://www.cnblogs.com/chen9510/p/5263432.html
Copyright © 2020-2023  润新知