- 题目网址: http://ac.jobdu.com/problem.php?pid=1480
- 题目描述:
-
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ...,aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中序列和最大为18,为子序列(1, 3, 5, 9)的和.
你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100, 1, 2, 3)的最大上升子序列和为100,而最长上升子序列为(1, 2, 3)。
- 输入:
-
输入包含多组测试数据。
每组测试数据由两行组成。第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
- 输出:
-
对于每组测试数据,输出其最大上升子序列和。
- 样例输入:
-
7 1 7 3 5 9 4 8
- 样例输出:
-
18
- 来源:
- 2012年北京大学计算机研究生机试真题
-
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> using namespace std; int a[1005]; int sum[1005]; int main() { int n,s,f; while(cin>>n) { for(int i=1;i<=n;i++) cin>>a[i]; sum[0]=0; sum[1]=a[1]; s=sum[1]; for(int i=2;i<=n;i++) { int maxn=0; for(int j=1;j<=i-1;j++) { if(a[j]<a[i]&&sum[j]>maxn) { maxn=sum[j]; } } sum[i]=maxn+a[i]; if(sum[i]>s) s=sum[i]; } cout<<s<<endl; } return 0; }