题目
已知 (f(x)=sum_{d|x}μ(d)∗d)
现在请求出下面式子的值
(sum_{i=1}^{n}sum_{j=1}^{n}f(gcd(i,j))∗f(lcm(i,j)))
由于值可能过大所以请对 10^9+7 取模
(n≤10^9)
分析
(f)为积性函数,
因为(lcm(i,j))、(gcd(i,j))的任意一个质因子的指数和(i)、(j)其中一个的相同。
对于每个质因子分开考虑, (f(gcd(i,j))f(lcm(i,j))=f(i)f(j))
[ans=sum_{i=1}^{n}sum_{j=1}^{n}f(i)f(j)
]
[=(sum_{i=1}^{n}f(i))^2
]
现在考虑如何求(sum_{i=1}^{n}f(i))
[=sum_{i=1}^{n}sum_{d|i}μ(d)∗d
]
[=sum_{i=1}^{n}sum_{d=1}^{lfloor frac{n}{i}
floor}μ(d)∗d
]
[=sum_{d=1}^{n}μ(d)∗dlfloor frac{n}{d}
floor
]
设(F(d)=μ(d)∗d,S(n)=sum_{i=1}^{n}F(i))
发现(F*id=e)(因为(sum_{d|n}μ(d)∗d*lfloor dfrac{n}{d}
floor)=[n=1])
于是
[1=sum_{i=1}^{n}sum_{d|i}μ(d)∗d*lfloor dfrac{i}{d}
floor
]
设(T=lfloor dfrac{i}{d} floor)
[=sum_{T=1}^{n}Tsum_{d|T}μ(d)∗d
]
[=sum_{T=1}^{n}Tsum_{d=1}^{lfloor frac{n}{T}
floor}μ(d)∗d
]
[=sum_{T=1}^{n}TS(lfloor frac{n}{T}
floor)
]
于是
[S(n)=1-sum_{T=2}^{n}TS(lfloor frac{n}{T}
floor)
]
杜教筛一下.
(ans=S(n)^2)
#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
const int maxlongint=2147483647;
const long long mo=1e9+7;
const int lim=1e5+7;
const int N=10000005;
using namespace std;
#define sqr(x) (1ll*(x)*(x)%mo)
#define val(x,y) (1ll*(y-x+1)*(x+y)/2%mo)
int p[N],mu[N],n,ha[lim+5][2],s[N],ans;
bool bz[N];
int get(int v)
{
int x;
for(x=v%lim;ha[x][0] && ha[x][0]!=v;(++x)-=x>=lim?lim:0);
return x;
}
int S(int m)
{
if(m<=N-5) return s[m];
int pos=get(m);
if(ha[pos][0]) return ha[pos][1];
ha[pos][0]=m;
int la=0,sum=0;
for(int i=2;i<=m;i=la+1)
{
la=m/(m/i);
sum=(1ll*sum+1ll*val(i,la)*S(m/i))%mo;
}
return ha[pos][1]=(1-sum+mo)%mo;
}
int main()
{
freopen("2026.in","r",stdin);
//freopen("2026.out","w",stdout);
scanf("%d",&n);
mu[1]=s[1]=1;
for(int i=2;i<=N-5;i++)
{
if(!bz[i]) mu[p[++p[0]]=i]=-1;
s[i]=(s[i-1]+mu[i]*i+mo)%mo;
for(int j=1,k;j<=p[0] && (k=i*p[j])<=N-5;j++)
{
bz[k]=true;
if(i%p[j]==0) break;
mu[k]=-mu[i];
}
}
int la=1;
for(int i=1;i<=n;i=la+1)
{
la=n/(n/i);
ans=(1ll*ans+1ll*(S(la)-S(i-1)+mo)*(n/i))%mo;
}
printf("%lld",sqr(ans));
}