HDU-5279(CDQ+NTT)
本质其实是要求\(n\)个点森林数量\(dp_n\),\(n\)个点森林并且\(1,n\)在同一连通块的数量\(f_n\)
总方案就是\(\Pi dp_{a_i}\cdot 2^n-\Pi f_{a_i}\)
就是减去所有环都连着,并且\(1,a_i\)连着的方案数
我们知道\(n\)个点树的数量是\(n^{n-2}\)(Prufer序列)
枚举\(1\)号点所在树的大小为\(j\),则\(dp_i=dp_{i-j}\cdot j^{j-2}\cdot C(i-1,j-1)\)
可以看到是一个与差值有关的转移,可以通过\(CDQ+NTT\)优化
然后就是求\(f_i\),其实就是枚举\(1,i\)号点所在树的大小为\(j\),\(f_i=dp_{i-j}\cdot C(i-2,j-2) \cdot j^{j-2}\),可以直接\(NTT\)解决
#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define rep(i,a,b) for(reg int i=a,i##end=b;i<=i##end;++i)
#define drep(i,a,b) for(reg int i=a,i##end=b;i>=i##end;--i)
template <class T> inline void cmin(T &a,T b){ ((a>b)&&(a=b)); }
template <class T> inline void cmax(T &a,T b){ ((a<b)&&(a=b)); }
char IO;
int rd(){
int s=0,f=0;
while(!isdigit(IO=getchar())) if(IO=='-') f=1;
do s=(s<<1)+(s<<3)+(IO^'0');
while(isdigit(IO=getchar()));
return f?-s:s;
}
const ll N=(1<<18)|4,P=998244353;
int n=1e5;
ll Fac[N],Inv[N];
ll Tr[N];
ll qpow(ll x,ll k){
ll res=1;
for(;k;k>>=1,x=x*x%P) if(k&1) res=res*x%P;
return res;
}
ll dp[N],f[N],A[N],B[N];
int rev[N];
void NTT(int n,ll *a,int f) {
rep(i,0,n-1) if(rev[i]<i) swap(a[i],a[rev[i]]);
for(reg int i=1;i<n;i<<=1) {
ll w=qpow(f==1?3:(P+1)/3,(P-1)/i/2);
for(reg int l=0;l<n;l+=2*i) {
ll e=1;
for(reg int j=l;j<l+i;++j,e=e*w%P) {
ll t=a[j+i]*e%P;
a[j+i]=a[j]-t;
a[j]=a[j]+t;
(a[j+i]<0&&(a[j+i]+=P));
(a[j]>=P&&(a[j]-=P));
}
}
}
if(f==-1) {
ll base=qpow(n,P-2);
rep(i,0,n-1) a[i]=a[i]*base%P;
}
}
void Solve(int l,int r) { // CDQ计算dp
if(l==r) return;
int mid=(l+r)>>1;
Solve(l,mid);
int R=1,cc=-1;
while(R<=r-l+1) R<<=1,cc++;
rep(i,1,R) rev[i]=(rev[i>>1]>>1)|((i&1)<<cc);
rep(i,0,R) A[i]=B[i]=0;
rep(i,l,mid) A[i-l]=dp[i]*Inv[i]%P;
rep(i,1,r-l) B[i]=Inv[i-1]%P*Tr[i]%P;
NTT(R,A,1),NTT(R,B,1);
rep(i,0,R-1) A[i]=A[i]*B[i]%P;
NTT(R,A,-1);
rep(i,mid+1,r) dp[i]=(dp[i]+A[i-l]*Fac[i-1])%P;
Solve(mid+1,r);
}
int main(){
Fac[0]=Fac[1]=Inv[0]=Inv[1]=1;
rep(i,2,N-1) {
Fac[i]=Fac[i-1]*i%P;
Inv[i]=(P-P/i)*Inv[P%i]%P;
}
rep(i,2,N-1) Inv[i]=Inv[i-1]*Inv[i]%P;
Tr[1]=Tr[2]=1;
rep(i,3,N-1) Tr[i]=qpow(i,i-2); // n个点树的数量
dp[0]=1;
Solve(0,n);
int R=1,cc=-1;
while(R<=n*2) R<<=1,cc++;
rep(i,1,R) rev[i]=(rev[i>>1]>>1)|((i&1)<<cc);
rep(i,0,R) A[i]=B[i]=0;
rep(i,0,n) A[i]=dp[i]*Inv[i]%P;
rep(i,2,n) B[i]=Tr[i]*Inv[i-2]%P;
NTT(R,A,1),NTT(R,B,1);
rep(i,0,R-1) A[i]=A[i]*B[i]%P;
NTT(R,A,-1);
f[1]=1;
rep(i,2,n) f[i]=A[i]*Fac[i-2]%P; // 计算1,n联通的方案数
rep(kase,1,rd()) {
n=rd();
ll s1=1,s2=1;
rep(i,1,n) {
int x=rd();
s1=s1*dp[x]%P;
s2=s2*f[x]%P;
}
ll ans=(qpow(2,n))*s1-s2;
ans=(ans%P+P)%P;
printf("%lld\n",ans);
}
}