先是看错题意。。然后知道题意之后写了发dp..无限TLE..实在是不知道怎么优化了,跑了遍数据是对的,就当作理论AC掉好了。。
#pragma warning(disable:4996) #include <iostream> #include <cstring> #include <string> #include <vector> #include <cstdio> #include <queue> #include <algorithm> #include <cmath> #include <ctime> using namespace std; #define ll long long #define maxn 120000 #define mod 998244353 ll mod_pow(ll a, ll n){ ll ret = 1; while (n){ if (n & 1) ret = ret*a%mod; a = a*a%mod; n >>= 1; } return ret; } ll fac[maxn]; ll fac_inv[maxn]; int cnt[2500]; int dp[13][2500]; int two[13] = { 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 }; int two_com[13] = { 0, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 }; int n; inline int getint() { int ret = 0; bool ok = 0; for (;;) { int c = getchar(); if (c >= '0'&&c <= '9')ret = (ret << 3) + ret + ret + c - '0', ok = 1; else if (ok)return ret; } } inline ll comb(int n, int m){ return fac[n] * fac_inv[m] % mod*fac_inv[n - m] % mod; } inline void add(int &a, int b){ a += b; if (a >= mod) a -= mod; } int main() { //freopen("1001.in", "r", stdin); //freopen("out.txt", "w", stdout); //double t1 = clock(); fac[0] = fac_inv[0] = 1; for (int i = 1; i <= 100000; ++i){ fac[i] = fac[i - 1] * i%mod; } fac_inv[100000] = mod_pow(fac[100000], mod - 2); for (int i = 99999; i >= 0; --i){ fac_inv[i] = fac_inv[i + 1] * (i + 1) % mod; } int ca = 0; while (~scanf("%d", &n) && n){ for (int i = 1; i <= 12; ++i) cnt[two[i]] = 0; int tmp; for (int i = 0; i < n; ++i) { tmp = getint(); cnt[tmp]++; } int pn = 0; for (int i = 1; i <= 12; ++i) pn += cnt[two[i]]; memset(dp, 0, sizeof(dp)); dp[0][0] = 1; ll sum,cb; for (int i = 1; i <= 12; ++i){ int num = cnt[two[i]]; for (int j = 0; j <= two_com[i - 1]; ++j){ sum = 0; int k; for (k = 0; (j >> 1) + k <= two_com[i] && k <= num; ++k){ cb = comb(num, k); sum = sum + cb; if (sum >= mod) sum -= mod; add(dp[i][(j >> 1) + k], dp[i - 1][j] * cb%mod); } if ((j >> 1) + num > two_com[i]){ ll res = ((mod_pow(2, num) - sum) % mod + mod) % mod; add(dp[i][two_com[i]], res*dp[i - 1][j] % mod); } } } ll ans = dp[12][1] * mod_pow(2, n - pn) % mod; printf("Case #%d: %I64d ", ++ca, ans); } //double t2 = clock(); //cout << t2 - t1 << endl; return 0; }