• [LeetCode] Maximum Subarray


    Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

    For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
    the contiguous subarray [4,−1,2,1] has the largest sum = 6.

    click to show more practice.

    More practice:

    If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

     解题思路:

    1. 首先是简单的dp。

    2. 对于分治,考虑将数组分为左右两段,则最大连续子序列和可能在左半段,也可能在右半段,还可能跨界。三种情况求最大就可以了。

    class Solution {
    public:
        int dpSolution(int *a, int n)
        {
            if(n == 0) return 0;
            int *dp = new int[n + 1];
            dp[0] = a[0];
            int m = dp[0];
            for(int i = 1;i < n;i++)
            {
                if(dp[i - 1] > 0) dp[i] = dp[i - 1] + a[i];
                else dp[i] = a[i];
                m = max(dp[i], m);
            }
            return m;
        }
        
        int *data;
        int divideConquerSolution(int *a, int n)
        {
            if(n == 0)
                return 0;
            data = a;
            return dcs(0, n);
        }
        
        int dcs(int a, int b)
        {
            if(b - a == 1)
                return data[a];
        
            int mid = (a + b) / 2;
            int left = dcs(a, mid), right = dcs(mid, b);
            int rightSum = 0, leftSum = 0, rightMax = -(1 << 30), leftMax = -(1 << 30);
            for(int i = mid; i < b;i++)
            {
                rightSum += data[i];
                rightMax = max(rightSum, rightMax);
            }
            for(int i = mid - 1; i >= a;i--)
            {
                leftSum += data[i];
                leftMax = max(leftSum, leftMax);
            }
            return max(max(left, right), leftMax + rightMax);
        }
        
        int maxSubArray(int A[], int n) {
            // IMPORTANT: Please reset any member data you declared, as
            // the same Solution instance will be reused for each test case.
           // return dpSolution(A, n);
           return divideConquerSolution(A, n);
        }
    };
  • 相关阅读:
    BOM弹窗 滚动条
    标签占位信息
    标签样式操作
    Keepalived入门学习
    史上最全Redis面试题(2020最新版)
    一文带你读懂zookeeper在大数据生态的应用
    详细解析虚拟化的起源和分类
    干货 | Nginx负载均衡原理及配置实例
    干货 | 一文彻底读懂nginx中的location指令
    史上最全Linux面试题(2020最新版)
  • 原文地址:https://www.cnblogs.com/changchengxiao/p/3416555.html
Copyright © 2020-2023  润新知