• 04-树5 Root of AVL Tree(25 分)


    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

    Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the root of the resulting AVL tree in one line.

    Sample Input 1:

    5
    88 70 61 96 120
    

    Sample Output 1:

    70
    

    Sample Input 2:

    7
    88 70 61 96 120 90 65
    

    Sample Output 2:

    88
    
    我的答案:
      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 #include <unistd.h>
      4 
      5 typedef int ElementType;
      6 typedef struct AVLNode *Position;
      7 typedef Position AVLTree;
      8 
      9 struct AVLNode {
     10     ElementType Data;
     11     AVLTree Left;
     12     AVLTree Right;
     13     int Height;
     14 };
     15 
     16 int Max(int a, int b)
     17 {
     18     return a>b?a:b;
     19 }
     20 
     21 int GetHeight(AVLTree A)
     22 {
     23     int MaxH, HR, HL;
     24     if(A) {
     25         HL = GetHeight(A->Left);
     26         HR = GetHeight(A->Right);
     27         MaxH = (HL>HR)?HL:HR;
     28         return MaxH+1;
     29     }
     30     return -1;
     31 }
     32 
     33 AVLTree SingleLeftRotation(AVLTree A)
     34 {
     35     AVLTree B = A->Left;
     36     A->Left = B->Right;
     37     B->Right = A;
     38     A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1;
     39     B->Height = Max(GetHeight(B->Left), A->Height) + 1;
     40 
     41     return B;
     42 }
     43 
     44 AVLTree SingleRightRotation(AVLTree A)
     45 {
     46     AVLTree B = A->Right;
     47     A->Right = B->Left;
     48     B->Left = A;
     49     A->Height = Max(GetHeight(A->Left), GetHeight(A->Right)) + 1;
     50     A->Height = Max(GetHeight(B->Right), A->Height) + 1;
     51 
     52     return B;
     53 }
     54 
     55 AVLTree DoubleLeftRightRotation(AVLTree A)
     56 {
     57     A->Left = SingleRightRotation(A->Left);
     58 
     59     return SingleLeftRotation(A);
     60 }
     61 
     62 AVLTree DoubleRightLeftRotation(AVLTree A)
     63 {
     64     A->Right = SingleLeftRotation(A->Right);
     65 
     66     return SingleRightRotation(A);
     67 }
     68 
     69 AVLTree Insert(AVLTree T, ElementType X)
     70 {
     71     if(!T) {
     72         T = (AVLTree)malloc(sizeof(struct AVLNode));
     73         T->Data = X;
     74         T->Height = 0;
     75         T->Left = T->Right = NULL;
     76     } else if(X < T->Data) {
     77         T->Left = Insert(T->Left, X);
     78         if(GetHeight(T->Left) - GetHeight(T->Right) == 2) {
     79             if(X < T->Left->Data)
     80                 T = SingleLeftRotation(T);
     81             else
     82                 T = DoubleLeftRightRotation(T);
     83         }
     84     } else if(X > T->Data) {
     85         T->Right = Insert(T->Right, X);
     86         if(GetHeight(T->Left) - GetHeight(T->Right) == -2) {
     87             if(X > T->Right->Data)
     88                 T = SingleRightRotation(T);
     89             else
     90                 T = DoubleRightLeftRotation(T);
     91         }
     92     }
     93 
     94     T->Height = Max(GetHeight(T->Left), GetHeight(T->Right)) + 1;
     95     return T;
     96 }
     97 
     98 int main()
     99 {
    100     int N, i;
    101     ElementType data;
    102     AVLTree T;
    103 
    104     scanf("%d
    ", &N);
    105     for(i=0;i<N;i++) {
    106         scanf("%d", &data);
    107         T = Insert(T, data);
    108     }
    109     if(T)
    110         printf("%d", T->Data);
    111     return 0;
    112 }
    无欲速,无见小利。欲速,则不达;见小利,则大事不成。
  • 相关阅读:
    【java】定时任务@Scheduled
    20180513 实参 形参 数组
    20180513 实参 形参
    20180513 数组 实参 形参
    <转载>二维数组回形遍历
    20180318 代码错题(8)
    20180318 代码错题(7)
    20180318 代码错题(6)
    20180318 代码错题(5)
    20180318 bit置0
  • 原文地址:https://www.cnblogs.com/ch122633/p/8794361.html
Copyright © 2020-2023  润新知