• 计算几何模板


    我在算法竞赛从入门到进阶那里看的,通过做题还加了一些函数,觉得不错来看看吧!(有新的函数算法我会持续更新放入,记得来看!)

    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define ll long long
    #define N 100005
    #define eps 0.00000001//偏差值1e8
    #define pi acos(-1.0)//高精度圆周率
    const int maxp = 1010; //点的数量
    int sgn(double x){ //判断x是否等于0
    if (fabs(x) < eps) return 0;
    else return x < 0 ? -1 : 1;
    }
    int Dcmp(double x, double y){ //比较两个浮点数:0为相等;-1为小于;1为大于
    if (fabs(x - y) < eps)return 0;
    else return x < y ? -1 : 1;
    }
    //——————————————————平面几何:点和线————————————————————————
    struct Point { //定义点及其基本运算
    double x, y;
    Point() {}
    Point(double x, double y) :x(x), y(y) {}
    Point operator + (Point B) { return Point(x + B.x, y + B.y); }
    Point operator - (Point B) { return Point(x - B.x, y - B.y); }
    Point operator * (double k) { return Point(x *k, y * k); } //长度增大k倍
    Point operator / (double k) { return Point(x / k, y /k); } //长度缩小k倍
    bool operator ==(Point B) { return sgn(x - B.x) == 0 && sgn(y - B.y) == 0; }
    bool operator <(Point B) //比较两个点,用于凸包计算
    {
    return sgn(x - B.x) < 0 || (sgn(x - B.x) == 0 && sgn(y - B.y) < 0);
    }
    };
    typedef Point Vector; //定义向量
    double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } //点积
    double Len(Vector A) { return sqrt(Dot(A, A)); } //向量的长度
    double Len2(Vector A) { return Dot(A, A); } //向量长度的平方
    //A与B的夹角
    double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Len(A) / Len(B)); }
    double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } //叉积
    //三角形ABC面积的两倍
    double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
    //两点的距离,用两种方式实现
    double Distance(Point A, Point B) { return hypot(A.x - B.x, A.y - B.y); }
    double Dist(Point A, Point B){
    return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y));
    }
    //向量A的单位法向量
    Vector Normal(Vector A) { return Vector(-A.y / Len(A), A.x / Len(A)); }
    //向量是否平行或重合
    bool Parallel(Vector A, Vector B) { return sgn(Cross(A, B)) == 0; }
    Vector Rotate(Vector A, double rad) { //向量A逆时针旋转rad度
    return Vector(A.x * cos(rad) - A.y * sin(rad), A.x * sin(rad) + A.y * cos(rad));
    }
    struct Line { //线上的两个点
    Point p1, p2;
    Line(){}
    Line(Point p1,Point p2):p1(p1),p2(p2){}
    //根据一个点和倾斜角angle确定直线,0≤angle<pi
    Line(Point p, double angle)
    {
    p1 = p;
    if (sgn(angle - pi / 2) == 0) { p2 = (p1 + Point(0, 1)); }
    else { p2 = (p1 + Point(1, tan(angle))); }
    }
    //ax+by+c=0
    Line(double a, double b, double c) {
    if (sgn(a) == 0) {
    p1 = Point(0, -c / b);
    p2 = Point(1, -c / b);
    }
    else if (sgn(b) == 0) {
    p1 = Point(-c / a, 0);
    p2 = Point(-c / a, 1);
    }
    else {
    p1 = Point(0, -c / b);
    p2 = Point(1, (-c - a) / b);
    }
    }
    };
    typedef Line Segment; //定义线段,两端点是Point p1,p2
    //返回直线倾斜角,0≤angle<pi
    double Line_angle(Line v) {
    double k = atan2(v.p2.y - v.p1.y, v.p2.x - v.p1.x);
    if (sgn(k) < 0)k += pi;
    if (sgn(k - pi) == 0)k -= pi;
    return k;
    }

    bool getcross(double x1,double y1,double x2,double y2,double x3,double y3,double x4,double y4,double &tx,double &ty)//求两直线交点
    {
    double A1=y2-y1;
    double B1=x1-x2;
    double C1=cross(x1,y1,x2,y2);
    double A2=y4-y3;
    double B2=x3-x4;
    double C2=cross(x3,y3,x4,y4);
    if(fabs(cross(A1,B1,A2,B2))<1e-6)return 0;
    tx=cross(C1,B1,C2,B2)/cross(A1,B1,A2,B2);
    ty=cross(A1,C1,A2,C2)/cross(A1,B1,A2,B2);
    return 1;
    }


    //点和直线的关系:1为在左侧;2为点在右侧;0为点在直线上
    int Point_line_relation(Point p,Line v){
    int c = sgn(Cross(p - v.p1, v.p2 - v.p1));
    if (c < 0)return 1; //1:p在v的左边
    if (c > 0)return 2; //2:p在v的右边
    return 0; //0:p在v上
    }
    //点和线段的关系:0为点p不在线段v上;1为点p在线段v上
    bool Point_on_seg(Point p, Line v)
    {
    return sgn(Cross(p - v.p1, v.p2 - v.p1)) == 0 && sgn(Dot(p - v.p1, p - v.p2)) <= 0;
    }
    //两直线的关系:0为平行,1为重合,2为相交
    int Line_relation(Line v1, Line v2){
    if (sgn(Cross(v1.p2 - v1.p1, v2.p2 - v2.p1)) == 0) {
    if (Point_line_relation(v1.p1, v2) == 0)return 1; //1:重合
    else return 0; //0:平行
    }
    return 2; //2:相交
    }
    //点到直线的距离
    double Dis_point_line(Point p, Line v) {
    return fabs(Cross(p - v.p1, v.p2 - v.p1)) / Distance(v.p1, v.p2);
    }
    //点在直线上的投影
    Point Point_line_proj(Point p, Line v) {
    double k = Dot(v.p2 - v.p1, p - v.p1) / Len2(v.p2 - v.p1);
    return v.p1 + (v.p2 - v.p1) * k;
    }
    //点到线段的距离
    double Dis_point_seg(Point p, Segment v) {
    if (sgn(Dot(p - v.p1, v.p2 - v.p1)) < 0 || sgn(Dot(p - v.p2, v.p1 - v.p2)) < 0)
    return min(Distance(p, v.p1), Distance(p, v.p2));//点的投影不在线段上
    return Dis_point_line(p, v); //点的投影不在线段上
    }
    //求两直线ab与cd的交点,在调用前要保证两直线不平行或重合
    Point Cross_point(Point a, Point b, Point c, Point d) {
    double s1 = Cross(b - a, c - a);
    double s2 = Cross(b - a, d - a);
    return Point(c.x * s2 - d.x * s1, c.y * s2 - d.y * s1) / (s2 - s1);
    }
    //两线段是否相交:1为相交,0为不相交
    bool Cross_segment(Point a, Point b, Point c, Point d) { //Line1:ab,Line2:cd
    double c1 = Cross(b - a, c - a), c2 = Cross(b - a, d - a);
    double d1 = Cross(d - c, a - c), d2 = Cross(d - c, b - c);
    return sgn(c1) * sgn(c2) < 0 && sgn(d1) * sgn(d2) < 0;
    //注意交点是端点的情况不算在内
    }

    //——————————————平面几何:多边形————————————————————————
    struct Polygon
    {
    int n; //多边形的顶点数
    Point p[maxp]; //多边形的点
    Line v[maxp]; //多边形的边
    };
    //判断点和任意多边形的关系:3为点上;2为边上;1为内部;0为外部
    int Point_in_polygon(Point pt, Point* p, int n)
    {
    int i;
    for (i = 0; i < n; i++) {
    if (p[i] == pt)return 3;
    }
    for (i = 0; i < n; i++)
    {
    Line v = Line(p[i],p[(i + 1) % n]);
    if (Point_on_seg(pt, v))return 2;
    }
    int num = 0;
    for (int i = 0; i < n; i++)
    {
    int j = (i + 1)%n;
    int c = sgn(Cross(pt - p[j], p[i] - p[j]));
    int u = sgn(p[i].y - pt.y);
    int v = sgn(p[j].y - pt.y);
    if (c > 0 && u < 0 && v >= 0)num++;
    if (c < 0 && u >= 0 && v < 0)num--;
    }
    return num != 0;
    }
    //多边形面积
    double Polygon_area(Point* p, int n) { //从原点开始划分是三角形
    double area = 0;
    for (int i = 0; i < n; i++)
    area += Cross(p[i], p[(i + 1) % n]);
    return area / 2; //面积有正负,不能简单地取绝对值
    }
    double mult(Point a, Point b, Point o) { //计算叉乘 ao 和 bo
    return (a.x - o.x) * (b.y - o.y) >= (b.x - o.x) * (a.y - o.y);
    }
    int Graham(Point p[], int n, Point res[]) { //逆时针排序,构造凸包形状
    int top = 1;
    sort(p, p + n);
    if (n == 0) return 0;
    res[0] = p[0];
    if (n == 1) return 0;
    res[1] = p[1];
    if (n == 2) return 0;
    res[2] = p[2];
    for (int i = 2; i < n; i++) {
    while (top && (mult(p[i], res[top], res[top - 1])))
    top--;
    res[++top] = p[i];
    }
    int len = top;
    res[++top] = p[n - 2];
    for (int i = n - 3; i >= 0; i--) {
    while (top != len && (mult(p[i], res[top], res[top - 1])))
    top--;
    res[++top] = p[i];
    }
    return top;
    }
    //求多边形的重心
    Point Polygon_center(Point* p, int n) {
    Point ans(0, 0);
    if (Polygon_area(p, n) == 0)return ans;
    for (int i = 0; i < n; i++)
    ans = ans + (p[i] + p[(i + 1) % n]) * Cross(p[i], p[(i + 1) % n]);
    return ans / Polygon_area(p, n) / 6;
    }
    //Convex_hull()求凸包.凸包顶点放在ch中,返回值是凸包的顶点数
    int Convex_hull(Point* p, int n, Point* ch) {
    sort(p, p + n); //对点排序:按x从小到大排序,如果x相同,按y排序
    n = unique(p, p + n) - p; //去除重复点
    int v = 0;
    //求下凸包.如果p[i]是右拐弯的,这个点不在凸包上,往回退
    for (int i = 0; i < n; i++){
    while (v > 1 && sgn(Cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 2])) <= 0)
    v--;
    ch[v++] = p[i];
    }
    int j = v;
    //求上凸包
    for (int i = n - 2; i >= 0; i--){
    while (v > j&& sgn(Cross(ch[v - 1] - ch[v - 2], p[i] - ch[v - 2])) <= 0)
    v--;
    ch[v++] = p[i];
    }
    if (n > 1)v--;
    return v; //返回值v是凸包的顶点数
    }
    //——————————————平面几何:圆——————————————
    struct Circle {
    Point c; //圆心
    double r; //半径
    Circle(){}
    Circle(Point c,double r):c(c),r(r){}
    Circle(double x, double y, double _r) { c = Point(x, y); r = _r; }
    };
    //点和圆的关系:0为点在圆内,1为点在圆上,2为点在圆外
    int Point_circle_relation(Point p, Circle C) {
    double dst = Distance(p, C.c);
    if (sgn(dst - C.r) < 0)return 0; //点在圆内
    if (sgn(dst - C.r) == 0)return 1; //圆上
    return 2; //圆外
    }
    //直线和圆的关系:0为直线在圆内,1为直线和圆相切,2为直线在圆外
    int Line_circle_relation(Line v, Circle C) {
    double dst = Dis_point_line(C.c, v);
    if (sgn(dst - C.r) < 0)return 0; //直线在圆内
    if (sgn(dst - C.r) == 0)return 1; //直线和圆相切
    return 2; //直线在圆外
    }
    //线段和圆的关系:0为线段在圆内,1为线段和圆相切,2为线段在圆外
    int Seg_circle_relation(Segment v, Circle C) {
    double dst = Dis_point_seg(C.c, v);
    if (sgn(dst - C.r) < 0)return 0; //线段在圆内
    if (sgn(dst - C.r) == 0)return 1; //线段和圆相切
    return 2; //线段在圆外
    }
    //直线和圆的交点.pa、pb是交点.返回值是交点的个数
    int Line_cross_circle(Line v, Circle C, Point& pa, Point& pb){
    if (Line_circle_relation(v, C) == 2)return 0; //无交点
    Point q = Point_line_proj(C.c, v); //圆心在直线上的投影点
    double d = Dis_point_line(C.c, v); //圆心到直线的距离
    double k = sqrt(C.r * C.r - d * d);
    if (sgn(k) == 0) { //一个交点,直线和圆相切
    pa = q;
    pb = q;
    return 1;
    }
    Point n = (v.p2 - v.p1) / Len(v.p2 - v.p1); //单位向量
    pa = q + n * k;
    pb = q - n * k;
    return 2; //两个交点
    }
    //————————————————三维几何————————————————————————————
    //三维:点
    struct Point3 {
    double x, y, z;
    Point3() {}
    Point3(double x, double y, double z) :x(x), y(y), z(z){}
    Point3 operator + (Point3 B) { return Point3(x + B.x, y + B.y, z + B.z); }
    Point3 operator - (Point3 B) { return Point3(x - B.x, y - B.y, z - B.z); }
    Point3 operator * (double k) { return Point3(x *k, y *k, z *k); }
    Point3 operator / (double k) { return Point3(x / k, y / k, z / k); }
    bool operator ==(Point3 B) {
    return sgn(x - B.x) == 0 && sgn(y - B.y) == 0 && sgn(z - B.z) == 0;
    }
    };
    typedef Point3 Vector3;
    //点积.和二维点积函数同名.c++允许函数同名
    double Dot(Vector3 A, Vector3 B) { return A.x * B.x + A.y * B.y + A.z * B.z; }
    //叉积
    Vector3 Cross(Vector3 A, Vector3 B) {
    return Point3(A.y * B.z - A.z * B.y, A.z * B.x - A.x * B.z, A.x * B.y - A.y * B.x);
    }
    double Len(Vector3 A) { return sqrt(Dot(A, A)); } //向量的长度
    double Len2(Vector3 A) { return Dot(A, A); } //向量的长度的平方
    double Distance(Point3 A, Point3 B){ //A、B的距离
    return sqrt((A.x - B.x) * (A.x - B.x) +
    (A.y - B.y) * (A.y - B.y) +
    (A.z - B.z) * (A.z - B.z));
    }
    //A与B的夹角
    double Angle(Vector3 A, Vector3 B) { return acos(Dot(A, B) / Len(A) / Len(B)); }
    //三维:线
    struct Line3 {
    Point3 p1, p2;
    Line3() {}
    Line3(Point3 p1,Point3 p2):p1(p1),p2(p2){}
    };
    typedef Line3 Segment3; //定义线段,两端点是Point p1,p2
    //三维:三角线面积的两倍
    double Area2(Point3 A, Point3 B, Point3 C) { return Len(Cross(B - A, C - A)); }
    //三维:点到直线的距离
    double Dis_point_line(Point3 p, Line3 v) {
    return Len(Cross(v.p2 - v.p1, p-v.p1)) / Distance(v.p1, v.p2);
    }
    //三维:点在直线上
    bool Point_line_relation(Point3 p, Line3 v) {
    return sgn(Len(Cross(v.p1 - p, v.p2 - p))) == 0
    && sgn(Dot(v.p1 - p, v.p2 - p)) == 0;
    }
    //三维:点到线段的距离
    double Dis_point_seg(Point3 p, Segment3 v) {
    if (sgn(Dot(p - v.p1, v.p2 - v.p1)) < 0 || sgn(Dot(p - v.p2, v.p1 - v.p2)) < 0)
    return min(Distance(p, v.p1), Distance(p, v.p2));
    return Dis_point_line(p, v);
    }
    //三维:点p在直线上的投影
    Point3 Point_line_proj(Point3 p, Line3 v) {
    double k = Dot(v.p2 - v.p1, p - v.p1) / Len2(v.p2 - v.p1);
    return v.p1 + (v.p2 - v.p1) * k;
    }
    //三维:平面
    struct Plane {
    Point3 p1, p2, p3; //平面上的3个点
    Plane(){}
    Plane(Point3 p1,Point3 p2,Point3 p3):p1(p1),p2(p2),p3(p3){}
    };
    //平面法向量
    Point3 Pvec(Point3 A, Point3 B, Point3 C) { return Cross(B - A, C - A); }
    Point3 Pvec(Plane f) { return Cross(f.p2 - f.p1, f.p3 - f.p1); }
    //四点共平面
    bool Point_on_plane(Point3 A, Point3 B, Point3 C, Point3 D) {
    return sgn(Dot(Pvec(A, B, C), D - A)) == 0;
    }
    //两平面平行
    int Parallel(Plane f1, Plane f2) {
    return sgn(Dot(Pvec(f1), Pvec(f2)))<eps;
    }
    //两平面垂直
    int Vertical(Plane f1, Plane f2){
    return sgn(Dot(Pvec(f1), Pvec(f2))) == 0;
    }
    //直线与平面的交点p,返回值是交点的个数
    int Line_cross_plane(Line3 u, Plane f, Point3& p) {
    Point3 v = Pvec(f); //平面的法向量
    double x = Dot(v, u.p2 - f.p1);
    double y = Dot(v, u.p1 - f.p1);
    double d = x - y;
    if (sgn(x) == 0 && sgn(y) == 0)return -1; //-1:v在f上
    if (sgn(d) == 0)return 0; //0:v与f平行
    p = ((u.p1 * x) - (u.p2 * y)) / d; //1:v与f相交
    return 1;
    }
    //四面体有向体积x6
    double volume4(Point3 A, Point3 B, Point3 C, Point3 D) {
    return Dot(Cross(B - A, C - A), D - A);
    }

  • 相关阅读:
    机器学习&深度学习资料(转载)
    深度学习相关链接
    机器学习入门之八:机器学习的思考--计算机的潜意识(转载)
    机器学习入门之七:机器学习的父类--人工智能(转载)
    机器学习入门之六:机器学习的子类--深度学习(转载)
    机器学习入门之五:机器学习的应用--大数据(转载)
    Oracle 12c 新特性之 数据库内归档(In-Database Archiving)
    Oracle 12c 新特性之 temp undo
    Oracle 12c 新特性之 PDB 级别闪回数据库
    Oracle 12c 多租户 CDB 与 PDB之 shared undo 与 Local undo 切换
  • 原文地址:https://www.cnblogs.com/ch-hui/p/12631194.html
Copyright © 2020-2023  润新知