目录
一、Demo实践
#Step1:库函数导入 ## 基础函数库 import numpy as np ## 导入画图库 import matplotlib.pyplot as plt import seaborn as sns ## 导入逻辑回归模型函数 from sklearn import svm #Step2:构建数据集并进行模型训练 ## 构造数据集 x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]]) y_label = np.array([0, 0, 0, 1, 1, 1]) ## 调用SVC模型 (支持向量机分类) svc = svm.SVC(kernel='linear') ## 用SVM模型拟合构造的数据集 svc = svc.fit(x_fearures, y_label) #Step3:模型参数查看 ## 查看其对应模型的w print('the weight of Logistic Regression:',svc.coef_) #the weight of Logistic Regression: [[0.33364706 0.33270588]] ## 查看其对应模型的w0 print('the intercept(w0) of Logistic Regression:',svc.intercept_) #the intercept(w0) of Logistic Regression: [-0.00031373] #Step4:模型预测 ## 模型预测 y_train_pred = svc.predict(x_fearures) print('The predction result:',y_train_pred) #The predction result: [0 0 0 1 1 1] #Step5:模型可视化 #由于此处选择的线性核函数,所以在此我们可以将svm进行可视化 # 最佳函数 x_range = np.linspace(-3, 3) w = svc.coef_[0] a = -w[0] / w[1] y_3 = a*x_range - (svc.intercept_[0]) / w[1] # 可视化决策边界 plt.figure() plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis') plt.plot(x_range, y_3, '-c') plt.show()
可以对照之前的逻辑回归模型的决策边界,我们可以发现两个决策边界是有一定差异的(可以对比两者在X,Y轴 上的截距),这说明这两个不同在相同数据集上找到的判别线是不同的,而这不同的原因其实是由于两者选择的 最优目标是不一致的。接下来我们进行SVM的一些简单介绍。
二、支持向量机
我们常常会碰到这样的一个问题,首先给你一些分属于两个类别的数据
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_blobs %matplotlib inline # 画图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=60, cmap=plt.cm.Paired)
现在需要一个线性分类器,将这些数据分开来。
我们可能会有多种分法:
# 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) x_fit = np.linspace(0, 3) # 画函数 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') y_2 = -0.3 * x_fit + 3 plt.plot(x_fit, y_2, '-k')
那么现在有一个问题,两个分类器,哪一个更好呢?
为了判断好坏,我们需要引入一个准则:好的分类器不仅仅是能够很好的分开已有的数据集,还能对未知数据集 进行两个的划分。
假设,现在有一个属于红色数据点的新数据(3, 2.8)
# 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) plt.scatter([3], [2.8], c='#cccc00', marker='<', s=100, cmap=plt.cm.Paired) x_fit = np.linspace(0, 3) # 画函数 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') y_2 = -0.3 * x_fit + 3 plt.plot(x_fit, y_2, '-k')
可以看到,此时黑色的线会把这个新的数据集分错,而蓝色的线不会。
我们刚刚举的例子可能会带有一些主观性。
那么如何客观的评判两条线的健壮性呢?
此时,我们需要引入一个非常重要的概念:最大间隔。
最大间隔刻画着当前分类器与数据集的边界,以这两个分类器为例:
可以看到, 蓝色的线最大间隔是大于黑色的线的。
所以我们会选择蓝色的线作为我们的分类器。
# 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画图 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') # 画边距 plt.fill_between(x_fit, y_1 - 0.6, y_1 + 0.6, edgecolor='none', color='#AAAAAA', alpha=0.4)
那么,我们现在的分类器是最优分类器吗?
或者说,有没有更好的分类器,它具有更大的间隔?
答案是有的。
为了找出最优分类器,我们需要引入我们今天的主角:SVM
from sklearn.svm import SVC # SVM 函数 clf = SVC(kernel='linear') clf.fit(X, y) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下届 b_down = clf.support_vectors_[0] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上届 b_up = clf.support_vectors_[-1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none')
全部代码如下(折叠)
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:12:48 2020 @author: Admin """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_blobs %matplotlib inline # 画图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=60, cmap=plt.cm.Paired) # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) x_fit = np.linspace(0, 3) # 画函数 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') y_2 = -0.3 * x_fit + 3 plt.plot(x_fit, y_2, '-k') # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) plt.scatter([3], [2.8], c='#cccc00', marker='<', s=100, cmap=plt.cm.Paired) x_fit = np.linspace(0, 3) # 画函数 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') y_2 = -0.3 * x_fit + 3 plt.plot(x_fit, y_2, '-k') # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) x_fit = np.linspace(0, 3) # 画函数 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') # 画边距 plt.fill_between(x_fit, y_1 - 0.6, y_1 + 0.6, edgecolor='none', color='#AAAAAA', alpha=0.4) y_2 = -0.3 * x_fit + 3 plt.plot(x_fit, y_2, '-k') plt.fill_between(x_fit, y_2 - 0.4, y_2 + 0.4, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画图 y_1 = 1 * x_fit + 0.8 plt.plot(x_fit, y_1, '-c') # 画边距 plt.fill_between(x_fit, y_1 - 0.6, y_1 + 0.6, edgecolor='none', color='#AAAAAA', alpha=0.4) from sklearn.svm import SVC # SVM 函数 clf = SVC(kernel='linear') clf.fit(X, y) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下届 b_down = clf.support_vectors_[0] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上届 b_up = clf.support_vectors_[-1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none')
三、软间隔
但很多时候,我们拿到的数据是这样子的
# 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired)
这种情况并不容易找到这样的最大间隔。
于是我们就有了软间隔,相比于硬间隔而言,我们允许个别数据出现在间隔带中。
我们知道,如果没有一个原则进行约束,满足软间隔的分类器也会出现很多条。
所以需要对分错的数据进行惩罚,SVC 函数中,有一个参数 C 就是惩罚参数。
惩罚参数越小,容忍性就越大。
以 C=1 为例子,比如说:
# 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 惩罚参数:C=1 clf = SVC(C=1, kernel='linear') clf.fit(X, y) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下界 b_down = clf.support_vectors_[0] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上界 b_up = clf.support_vectors_[-1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none')
惩罚参数 C=0.2 时,SVM 会更具包容性,从而兼容更多的错分样本:
X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 惩罚参数:C=0.2 clf = SVC(C=0.2, kernel='linear') clf.fit(X, y) x_fit = np.linspace(-1.5, 4) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下届 b_down = clf.support_vectors_[10] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上届 b_up = clf.support_vectors_[1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none')
全部代码如下(已折叠)
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:12:48 2020 @author: Admin """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets.samples_generator import make_blobs %matplotlib inline # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 惩罚参数:C=1 clf = SVC(C=1, kernel='linear') clf.fit(X, y) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下界 b_down = clf.support_vectors_[0] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上界 b_up = clf.support_vectors_[-1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none') X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.9) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 惩罚参数:C=0.2 clf = SVC(C=0.2, kernel='linear') clf.fit(X, y) x_fit = np.linspace(-1.5, 4) # 最佳函数 w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*x_fit - (clf.intercept_[0]) / w[1] # 最大边距 下届 b_down = clf.support_vectors_[10] y_down = a* x_fit + b_down[1] - a * b_down[0] # 最大边距 上届 b_up = clf.support_vectors_[1] y_up = a* x_fit + b_up[1] - a * b_up[0] # 画散点图 X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) # 画函数 plt.plot(x_fit, y_3, '-c') # 画边距 plt.fill_between(x_fit, y_down, y_up, edgecolor='none', color='#AAAAAA', alpha=0.4) # 画支持向量 plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none')
四、超平面
如果我们遇到这样的数据集,没有办法利用线性分类器进行分类
from sklearn.datasets.samples_generator import make_circles # 画散点图 X, y = make_circles(100, factor=.1, noise=.1, random_state=2019) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) clf = SVC(kernel='linear').fit(X, y) # 最佳函数 x_fit = np.linspace(-1.5, 1.5) w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*X - (clf.intercept_[0]) / w[1] plt.plot(X, y_3, '-c')
我们可以将二维(低维)空间的数据映射到三维(高维)空间中。
此时,我们便可以通过一个超平面对数据进行划分。
所以,我们映射的目的在于使用 SVM 在高维空间找到超平面的能力。
from mpl_toolkits.mplot3d import Axes3D # 数据映射 r = np.exp(-(X[:, 0] ** 2 + X[:, 1] ** 2)) ax = plt.subplot(projection='3d') ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap=plt.cm.Paired) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') x_1, y_1 = np.meshgrid(np.linspace(-1, 1), np.linspace(-1, 1)) z = 0.01*x_1 + 0.01*y_1 + 0.5 ax.plot_surface(x_1, y_1, z, alpha=0.3)
在 SVC 中,我们可以用高斯核函数来实现这以功能:kernel='rbf'
# 画图 X, y = make_circles(100, factor=.1, noise=.1, random_state=2019) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) clf = SVC(kernel='rbf') clf.fit(X, y) ax = plt.gca() x = np.linspace(-1, 1) y = np.linspace(-1, 1) x_1, y_1 = np.meshgrid(x, y) P = np.zeros_like(x_1) for i, xi in enumerate(x): for j, yj in enumerate(y): P[i, j] = clf.decision_function(np.array([[xi, yj]])) ax.contour(x_1, y_1, P, colors='k', levels=[-1, 0, 0.9], alpha=0.5, linestyles=['--', '-', '--']) plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none');
此时便完成了非线性分类。
SVM 的基础知识的直观感受到此就结束了。
代码(已折叠)
# -*- coding: utf-8 -*- """ Created on Tue Aug 11 10:12:48 2020 @author: Admin """ import numpy as np import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets.samples_generator import make_circles # 画散点图 X, y = make_circles(100, factor=.1, noise=.1, random_state=2019) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) clf = SVC(kernel='linear').fit(X, y) # 最佳函数 x_fit = np.linspace(-1.5, 1.5) w = clf.coef_[0] a = -w[0] / w[1] y_3 = a*X - (clf.intercept_[0]) / w[1] plt.plot(X, y_3, '-c') from mpl_toolkits.mplot3d import Axes3D # 数据映射 r = np.exp(-(X[:, 0] ** 2 + X[:, 1] ** 2)) ax = plt.subplot(projection='3d') ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=50, cmap=plt.cm.Paired) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') x_1, y_1 = np.meshgrid(np.linspace(-1, 1), np.linspace(-1, 1)) z = 0.01*x_1 + 0.01*y_1 + 0.5 ax.plot_surface(x_1, y_1, z, alpha=0.3) # 画图 X, y = make_circles(100, factor=.1, noise=.1, random_state=2019) plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap=plt.cm.Paired) clf = SVC(kernel='rbf') clf.fit(X, y) ax = plt.gca() x = np.linspace(-1, 1) y = np.linspace(-1, 1) x_1, y_1 = np.meshgrid(x, y) P = np.zeros_like(x_1) for i, xi in enumerate(x): for j, yj in enumerate(y): P[i, j] = clf.decision_function(np.array([[xi, yj]])) ax.contour(x_1, y_1, P, colors='k', levels=[-1, 0, 0.9], alpha=0.5, linestyles=['--', '-', '--']) plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], edgecolor='b', s=80, facecolors='none');
文章转自:https://developer.aliyun.com/ai/scenario/b6c1ef3172d84236ae10c3b91798a796