Flume官方文档
Usage: bin/flume-ng <command> [options]...
commands:
help display this help text
agent run a Flume agent
global options:
--conf,-c <conf> use configs in <conf> directory
-Dproperty=value sets a Java system property value
agent options:
--name,-n <name> the name of this agent (required)
--conf-file,-f <file> specify a config file (required if -z missing)
eg:
bin/flume-ng agent --conf conf --name agent-test --conf-file test.conf -Dflume.root.logger=DEBUG,console
bin/flume-ng agent -c conf -n agent-test -f test.conf -Dflume.root.logger=DEBUG,console
一个不能再简单的例子
1.编辑 Conf 范例 (官网和 conf 目录下都有)
# example.conf: A single-node Flume configuration
# 1.定义三个组件的名称
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 2.配置Source(从哪里连接Sources)
# Describe/configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = cen-ubuntu
a1.sources.r1.port = 44444
# 3.配置Sink(主要用于输出日志信息)
# Describe the sink
a1.sinks.k1.type = logger
a1.sinks.k1.maxBytesToLog = 1024
# 4.配置Channel(使用存储当做管道)
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 5.绑定三个组件
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2.安装 netcat (一个可以传输文件,信息的网络工具)来发送接收信息
$ sudo apt-get install netcat
3.运行实时 flume 实时抓取数据(监控 端口 )
bin/flume-ng agent --conf conf --name a1 --conf-file conf/a1.conf -Dflume.root.logger=DEBUG,console
4.通过 shell 查看端口是否开启成功
netstat -tnlp
5.通过 telnet 向该端口发送数据
telnet cen-ubuntu 44444
6.若Flume接收到数据则表示成功
Event: { headers:{} body: 6E 69 68 61 6F 20 08 0D nihao .. }
各种各样的 Sources
Exec Source 通过执行命令行
a1.sources = r1
a1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /var/log/secure
Spooling Directory Source 监控一个目录的文件变化
Kafka Source
Syslog Sources 收集系统日志
HTTP Source 通过HTTP协议供互联网下载服务器的数据
NetCat Source
各种各样的Channels
Memory Channel
Kafka Channel
File Channel 存在文件中
各种各样的Sinks
HDFS Sink
Hive Sink
HBase Siinks(HBase Sink ; AsyncHBaseSink)
MorphlineSolrSink 一个ELT工具(Extract, transform, load)
ElasticSearchSink 一个基于Lucene的搜索服务器
案例1:
收集Hive运行的目录到hdfs文件系统
分析:使用 Exec 来监控文件实时性较高,但可靠性较差,当系统命令中断后,数据丢失,或重新读取,数据安全性无法得到保障,生产环境中不能使用;使用文件缓存比内存来得更安全
- Source: Exec Source
tail -f /opt/cdh5.3.6/hive-0.13.1-cdh5.3.6/logs/hive.log - Channel: Memory Channel
- Sink: HDFS Sink
/user/cen/flume/hive-log
1.编写 agent 程序
# example.conf: A single-node Flume configuration
# 1.定义三个组件的名称
# Name the components on this agent
a2.sources = r2
a2.sinks = k2
a2.channels = c2
# 2.配置Source(从哪里连接Sources)
# Describe/configure the source
a2.sources.r2.type = exec
a2.sources.r2.command = tail -F /opt/cdh5.3.6/hive-0.13.1-cdh5.3.6/logs/hive.log
# 3.配置Sink(主要用于输出日志信息)
# Describe the sink
a2.sinks.k2.type = hdfs
# 非高可用的 namenode 指定 host (注1,注2)
a2.sinks.k2.hdfs.path = hdfs://cen-ubuntu:8020/user/cen/flume/hive-log
# 设置前缀
a2.sinks.k2.hdfs.filePrefix = events-
# 数据格式(不压缩的文本数据)
a2.sinks.k2.hdfs.fileType = DataStream
# 存储格式
a2.sinks.k2.hdfs.writeFormat = Text
# 每次写的event数
a2.sinks.k2.hdfs.batchSize = 100
# 设置文件滚动的参数(配合下面一项使用)
a2.sinks.k2.hdfs.rollInterval = 0
a2.sinks.k2.hdfs.rollSize = 1024
a2.sinks.k2.hdfs.rollCount = 0
# 参考http://doc.okbase.net/chiweitree/archive/126197.html
a2.sinks.k2.hdfs.minBlockReplicas=1
# 4.配置Channel(使用存储当做管道)
# Use a channel which buffers events in memory
a2.channels.c2.type = memory
a2.channels.c2.capacity = 1000
a2.channels.c2.transactionCapacity = 100
# 5.绑定三个组件
# Bind the source and sink to the channel
a2.sources.r2.channels = c2
a2.sinks.k2.channel = c2
2.添加相应的jar依赖包(使用 find /dir/dir -name 'filename' 即可轻松找到)
commons-configuration-1.6.jar
hadoop-common-2.5.0-cdh5.3.6.jar
hadoop-auth-2.5.0-cdh5.3.6.jar
hadoop-hdfs-2.5.0-cdh5.3.6.jar
3.执行
bin/flume-ng agent --conf conf --name a2 --conf-file conf/flume-tail.conf -Dflume.root.logger=DEBUG,console
案例二:
-
收集Hive运行的目录到hdfs文件系统
- Source: Spooling Directory Source
/opt/cdh5.3.6/hive-0.13.1-cdh5.3.6/logs/ - Channel: File Channel
- Sink: HDFS Sink
/user/cen/flume/hive-log
分析:Spooling Directory Source 通过监控文件夹的新增文件来实现日志信息收集。实际生产环境结合 log4j 来使用,日志文件传输完成后会修改其后缀名,添加.COMPLETED 后缀
1.编写 agent 程序
# example.conf: A single-node Flume configuration
# Name the components on this agent
a3.sources = r3
a3.sinks = k3
a3.channels = c3
# Describe/configure the source
a3.sources.r3.type = spooldir
a3.sources.r3.spoolDir = /opt/datas/flume/
a3.sources.r3.ignorePattern = (.)*.log$
# 监控后的文件后缀
a3.sources.r3.fileSuffix = .deleteable
# Describe the sink
a3.sinks.k3.type = hdfs
a3.sinks.k3.hdfs.path = hdfs://cen-ubuntu:8020/user/cen/flume/spool-file-hdfs/%Y%m%d
a3.sinks.k3.hdfs.useLocalTimeStamp = true
a3.sinks.k3.hdfs.filePrefix = events-
a3.sinks.k3.hdfs.fileType = DataStream
a3.sinks.k3.hdfs.writeFormat = Text
a3.sinks.k3.hdfs.batchSize = 10
# Use a channel which buffers events in file
a3.channels.c3.type = file
# 临时文件存储目录(可选)
a3.channels.c3.checkpointDir = /opt/cdh5.3.6/flume-1.5.0-cdh5.3.6/data/filechanel/cheakpoint
a3.channels.c3.dataDirs = /opt/cdh5.3.6/flume-1.5.0-cdh5.3.6/data/filechanel/data
# Bind the source and sink to the channel
a3.sources.r3.channels = c3
a3.sinks.k3.channel = c3
2.执行
bin/flume-ng agent --conf conf --name a3 --conf-file conf/spooling-file-hdfs.conf -Dflume.root.logger=DEBUG,console
3.运行结果
- 被读取过的文件从背上了.delectable 的罪名
- .log 结尾的文件不会被读取
- HDFS文件系统如实出现了被读取的文件,且按日期分文件夹存储
注1:HDFS 的 HA 配置
1.添加配置文件 hdfs-site.xml core-site.xml 到目录 conf 下
2.修改 hdfs 的路径
# 若 namenode 为HA
# a2.sinks.k2.hdfs.path = hdfs://ns1/user/cen/flume/hive-log
注2:特别的,可以设置一定规则(如按时间%Y%m%d)来创建文件目录,详情见官方文档
# 如官方文档所说明,关于时间有关的参数需要在 events 的头中加入服务器的时间这个字段,添加参数如下
hdfs.useLocalTimeStamp = true
注3:使用文件
/bin/sqoop --options-file /opt/datas/filename