• OSPF配置实验(一)


    单区域OSPF

    命令:

    R1(config)#router ospf 1        //启动OSPF进程

    R1(config-router)#router-id 1.1.1.1        //配置路由器ID

    R1(config-router)#network 172.16.1.0 0.0.0.255 area 0        //通告直连网络

    R1(config-router)#network 172.16.1.0 255.255.255.0 area 0        //通告直连网络

    说明:网络地址的后面即可以跟通配符掩码,在高版本IOS中也可以跟网络掩码,IOS会自动转换成通配符掩码。

     

    R1(config)#router ospf 1

    R1(config-router)#router-id 1.1.1.1

    R1(config-router)#network 172.16.1.0 0.0.0.255 area 0

    R1(config-router)#network 172.16.12.0 0.0.0.255 area 0

    R2(config)#router ospf 1

    R2(config-router)#router-id 2.2.2.2

    R2(config-router)#network 172.16.2.0 0.0.0.255 area 0

    R2(config-router)#network 172.16.12.0 0.0.0.255 area 0

    R2(config-router)#network 172.16.23.0 0.0.0.255 area 0

    R3(config)#router ospf 1

    R3(config-router)#router-id 3.3.3.3

    R3(config-router)#network 172.16.3.0 0.0.0.255 area 0

    R3(config-router)#network 172.16.23.0 0.0.0.255 area 0

    R3(config-router)#network 172.16.34.0 0.0.0.255 area 0

    R4(config)#router ospf 1

    R4(config-router)#router-id 4.4.4.4

    R4(config-router)#network 172.16.4.0 0.0.0.255 area 0

    R4(config-router)#network 172.16.34.0 0.0.0.255 area 0

     

    说明:

    1.OSPF路由进程ID的范围在1-65535之间,而且只有本地含义,不同路由器的路由进程ID可以不同。如果要想启

      动OSPF路由进程,至少确保有一个接口是up的。同一台路由器上可以启动多个OSPF进程,但会消耗更多的CPU

      和内存等资源。

    2.区域ID是0-4294967295的数,也可以是IP地址的格式A.B.C.D。当网络区域为0或0.0.0.0时称为主干区域。

    3.Router ID选择遵循如下顺序:

      1>最优先的是在OSPF进程中使用“router-id”指定了RID;

      2>如果没有在OSPF进程中指定RID,则选择IP地址最大的环回接口的IP地址为RID;

      3>如果没有环回接口,则选择活动的IP地址最大的物理接口的IP地址为RID。

         ①如果使用“secondary”配置IP地址时,该地址不起作用,即不参与RID竞选;

         ②使用“router-id”后,应使用命令“clear ip ospf process”重置ospf进程,新配置的RID才能生效;

         ③2、3步只有在下次重启路由器时才会生效,即后来加入大的IP地址也不能选举为RID直到路由器重启。

    4.Router ID重新选举规则:

      1>使用“router-id”和“clear ip ospf process”命令;

      2>重启路由器(不一定)。

     

    实验调试

    R1#show ip route ospf 1        //查看OSPF路由表

    以上输出结果表明在同一个区域内,通过OSPF路由协议学习到的路由条目用代码“O”表示。

    OSPF度量值cost计算公式 = 所有链路入接口的cost之和;

    接口cost计算公式 = 108/带宽(bps)取整;环回接口的cost值为1。

    说明:

    1.环回接口所在网络的OSPF路由条目的掩码长度都是32位,这是环回接口的特性,尽管通告了24位,解决的办法

      是在环回接口下修改网络类型为“Point-to-Point”这样收到的路由条目的掩码长度和通告的就能一致:

      R1(config-if)#ip ospf network point-to-point        //设置网络类型为点到点网络

      

      OSPF定义了6种网络类型,分别为:点对点、广播多路访问(BMA)、非广播多路访问(NBMA)、点对多点、环回接

      口、虚拟链路(Virtual Links)。
    2.路由条目“172.16.4.4/32”的度量值为“193”,到路由器R1经过的入接口包括:R4的loopback0、R3的

      S0/0、R2的S0/1及R1的S0/0,所以计算如下:1+108/1544000+108/1544000+108/1544000=193。也可以直接通过

      命令“ip ospf cost”配置接口的cost值,并且它是优先计算的cost值的,命令如下:
      R1(config-if)#ip ospf cost 64        //设置接口cost为64

      
    R1#show ip protocols        //查看启用的路由协议


    R1#show ip ospf 1        //可查看OSPF进程ID、RID、OSPF区域信息以及上次计算SPF算法的时间

    R1#show ip ospf interface        //查看运行OSPF接口的信息


    R1#show ip ospf neighbor        //查看OSPF邻居表的基本信息

     

     

    OSPF邻居关系不能建立的常见原因:

    1.Hello间隔和Dead间隔不同;

      1>同一链路上的Hello间隔和Dead间隔必须相同才能建立邻居关系;

        

      2>默认时,Dead间隔是Hello间隔的4倍。可以在接口下通过如下命令调整:

        R1(config-if)#ip ospf hello-intrval 10        //设置Hello包发送间隔为10s

        R1(config-if)#ip ospf dead-interval 40        //设置Dead时间为40s

        

    2.区域ID不一样;

    3.特殊区域(如stub、nssa等)区域类型不匹配;

    4.认证类型或密码不一致;

    5.路由器ID相同;

    6.Hello包被ACL拒绝;

    7.链路上的MTU不匹配;

    8.接口下OSPF网络类型不匹配。
    R1#show ip ospf database        //查看OSPF链路状态数据库的信息



    广播多路访问链路上的OSPF

    命令:

    R1(config-router)#auto-cost reference-bandwidth 1000 //修改OSPF计算度量值的参考带宽,单位MB/s


    R1(config)#router ospf 1

    R1(config-router)#auto-cost reference-bandwidth 1000

    R2(config)#router ospf 1

    R2(config-router)#auto-cost reference-bandwidth 1000
    R3(config)#router ospf 1

    R3(config-router)#auto-cost reference-bandwidth 1000
    R4(config)#router ospf 1

    R4(config-router)#auto-cost reference-bandwidth 1000
    说明:“auto-cost reference-bandwidth”命令是修改计算OSPF度量值参考带宽的。如果以太口带宽为千兆,而采用默认的百兆参考带宽,计算出来的cost是0.1,这显然是不太合理的。修改参考带宽要在路由器内所有的OSPF路由器上配置,目的是确保参考标准是相同的。

    另外,当执行命令“auto-cost reference-bandwidth”时,系统也会提示如下信息:

    OSPF配置实验(一)
    实验调试
    R4#show ip ospf neighbor        //分别在路由器R4和R1上执行该命令

    OSPF配置实验(一)
    以上输出表明在该广播多路访问网络中,路由器R4是DR,路由器R3是BDR,路由器R1和路由器R2是DROTHER。

    说明:

    1.DR和BDR有自己的组播地址224.0.0.6;

    2.DR和BDR的选举是以各网络为基础的,也就是说DR和BDR选举是路由器的接口特性,而不是整个路由器的特性;

    3.DR选举是非抢占的,除非人为地重新选举。

    4.DR选举的原则:

      ①首要因素是时间,最先启动的路由器会启动一个Waite Timer计时器(Cisco规定是40s),在计时器超时前如

        果没有新的OSPF路由器启动,它就被选举为DR,如果有新的路由器启动那么它们将按照②、③进行选举;
      ②如果同时启动,或者重新选举,则看接口优先级(范围为0-255),优先级最高的被选举成DR,默认情况下,

        多路访问网络的接口优先级为1,点到点网络接口优先级为0,如果接口优先级被设置为0,那么该接口将不

        参与DR选举,修改接口优先级命令是“ip ospf priority”:

      R1(config-if)#ip ospf priority 150        //修改端口优先级为150

      OSPF配置实验(一)

      ③如果同时启动,而优先级相同,则最后看RID,RID最高的被选举成DR。

    5.重新选举DR/BDR的方法:

      ①重启路由器(不一定);

      ②“clear ip ospf process”(不一定)。

    R4#show ip ospf int f0/0        //分别在路由器R4和R1上执行该命令

    OSPF配置实验(一)
    从上面的路由器R1和路由器R4的输出得知,邻居关系和邻接关系是不能混为一谈的,邻居关系是指达到2-Way状态的两台路由器,而邻接关系是指达到FULL状态的两台路由器。

     

    OSPF区域认证

    命令

    区域简单口令认证:

    R1(config-router)#area 0 authentication        //区域0启用简单口令认证

    R1(config-if)#ip ospf authentication-key cisco        //配置认证密码

    区域MD5认证:

    R1(config-router)#area 0 authentication message-digest        //区域0启用MD5认证

    R1(config-if)#ip ospf message-digest-key 1 md5 cisco        //配置认证Key ID及密匙

    OSPF配置实验(一)

    区域简单口令认证

    R1(config)#router ospf 1

    R1(config-router)#area 0 authentication

    R1(config)#int s0/0

    R1(config-if)#ip ospf authentication-key cisco

    R2(config)#router ospf 1

    R2(config-router)#area 0 authentication

    R2(config)#int s0/0

    R2(config-if)#ip ospf authentication-key cisco

    实验调试

    R1#show ip ospf
    OSPF配置实验(一)
    以上输出表明区域0采用了简单口令认证。

    R1#show ip ospf int s0/0
    OSPF配置实验(一)
    以上输出最后一行信息表明该接口启用了简单口令认证。

    R1#debug ip ospf packet
    OSPF配置实验(一)
    以上输出表明接收到认证类型为1的Hello数据包。

    认证:

    1.如果R1区域0没有启用认证,而R2区域0启用简单口令认证,则R2会出现下面的信息:

    R2#debug ip ospf events
    OSPF配置实验(一)
    2.如果R1和R2的区域0都启用简单口令认证,但R2接口下没有配置密码或密码错误,则R2会出现下面的信息:

    R2#debug ip ospf events

    区域MD5认证

    R1(config)#router ospf 1

    R1(config-router)#area 0 authentication message-digest

    R1(config)#int s0/0

    R1(config-if)#ip ospf message-digest-key cisco

    R2(config)#router ospf 1

    R2(config-router)#area 0 authentication message-digest

    R2(config)#int s0/0

    R2(config-if)#ip ospf message-digest-key cisco
    实验调试
    R1#show ip ospf


    以上输出表明区域0采用了MD5认证。

    R1#show ip ospf int s0/0
    OSPF配置实验(一)

    以上输出最后两行信息表明该接口启用了MD5认证,而且使用密钥ID为1进行认证。

    R1#debug ip ospf packet

    以上输出表明接收到认证类型为2,Key ID为1,序列号为0x3C7ECCC1的Hello数据包。

    认证

    1.如果R1的区域0启用MD5认证,而R2的区域0启用简单口令认证,则R2会出现下面的信息:

    R2#debug ip ospf events
    OSPF配置实验(一)
    2.如果R1和R2的区域0都启用MD5认证,但R2的接口下没配置Key ID和密码或错误密码,则R2会出现下面的信息:
    R2#debug ip ospf events

    OSPF配置实验(一)

    OSPF接口认证

    命令

    接口简单口令认证:

    R1(config-if)#ip ospf authentication        //接口启用简单口令认证

    R1(config-if)#ip ospf authentication-key cisco        //配置认证密码

    接口MD5认证:

    R1(config-if)#ip ospf authentication message-digest        //接口启用MD5认证

    R1(config-if)#ip ospf message-digest-key 1 md5 cisco        //配置认证Key ID及密匙

    OSPF配置实验(一)

    接口简单口令认证

    R1(config)#int s0/0

    R1(config-if)#ip ospf authentication

    R1(config-if)#ip ospf authentication-key cisco

    R2(config)#int s0/0

    R2(config-if)#ip ospf authentication

    R2(config-if)#ip ospf authentication-key cisco

    实验调试

    R1#show ip ospf int s0/0

    OSPF配置实验(一)

    以上输出最后一行信息表明该接口启用了简单口令认证。

    R1#debug ip ospf packet

    OSPF配置实验(一)
    以上输出表明接收到认证类型为1的Hello数据包。

    认证:

    1.如果R1的s0/0没有启用认证,而R2的s0/0启用简单口令认证,则R2会出现下面的信息:

    R2#debug ip ospf eventsOSPF配置实验(一)

    2.如果R1和R2的s0/0都启用简单口令认证,但R2的s0/0没有配置密码或密码错误,则R2会出现下面的信息:

    R2#debug ip ospf events


    接口MD5认证

    R1(config)#int s0/0

    R1(config-if)#ip ospf authentication message-digest

    R1(config-if)#ip ospf message-digest-key cisco

    R2(config)#int s0/0

    R2(config-if)#ip ospf authentication message-digest

    R2(config-if)#ip ospf message-digest-key cisco
    实验调试
    R1#show ip ospf int s0/0
    OSPF配置实验(一)
    以上输出最后两行信息表明该接口启用了MD5认证,而且使用密钥ID为1进行认证。

    R1#debug ip ospf packet
    OSPF配置实验(一)
    以上输出表明接收到认证类型为2,Key ID为1,序列号为0x3C7EC76D的Hello数据包。

    认证

    1.如果R1的s0/0启用MD5认证,而R2的s0/0启用简单口令认证,则R2会出现下面的信息:

    R2#debug ip ospf events


    2.如果R1和R2的s0/0都启用MD5认证,但R2的s0/0没配置Key ID和密码或错误密码,则R2会出现下面的信息:
    R2#debug ip ospf events
    OSPF配置实验(一)
    默认路由再发布(本地:静态默认路由 S*;其它:通告缺省默认外部路由 O*E2)

    OSPF配置实验(一)

    命令:

    R1(config)#ip route 0.0.0.0 0.0.0.0 loopback 1        //添加静态默认路由

    R1(config)#router ospf 1

    R1(config-router)#default-information originate        //再发布默认路由

    说明:“default-information originate”命令后面可以加可选的“always”参数,如果不使用该参数,路由器上必须存在一条默认路由,否则该命令不产生任何效果。如果使用该参数,无论路由器上是否存在默认路由,路由器都会向OSPF区域内注入一条默认路由。

    实验调试

    R4#show ip route


    以上R4路由表的输出表明,通过命令“default-information originate”确实可以向OSPF区域注入“O*E2”的默认路由。同样,R2、R3的路由表中也包含一条“O*E2”的默认路由。

    R4#show ip ospf database


    通过查看R4的拓扑结构数据库可以看到,确实从外面注入了一条类型5的LSA。

  • 相关阅读:
    hystrix 源码分析以及属性的配置
    golang官方包限流器使用和原理(golang.org/x/time/rate)
    pip通过指定分支和子目录从git仓库中拉取python包
    cgo使用示例总结
    python装饰器原理和用法总结
    centos7编译安装clang8(同时还会编译llvm的不少东西, 文中附带编译好的二进制压缩包)
    prometheus+alertmanager+granafa监控总结,安装基于docker-compose(长期更新)
    go条件变量的使用和原理
    canal+kafka订阅Mysql binlog将数据异构到elasticsearch(或其他存储方式)
    go对elasticsearch的增删改查
  • 原文地址:https://www.cnblogs.com/centos2017/p/7896797.html
Copyright © 2020-2023  润新知