• hdu3336 Count the string 扩展KMP


    It is well known that AekdyCoin is good at string problems as well as number theory problems. When given a string s, we can write down all the non-empty prefixes of this string. For example:
    s: "abab"
    The prefixes are: "a", "ab", "aba", "abab"
    For each prefix, we can count the times it matches in s. So we can see that prefix "a" matches twice, "ab" matches twice too, "aba" matches once, and "abab" matches once. Now you are asked to calculate the sum of the match times for all the prefixes. For "abab", it is 2 + 2 + 1 + 1 = 6.
    The answer may be very large, so output the answer mod 10007.

    题意:求一个字符串和它所有前缀的匹配次数总和,如'abab'与前缀'ab'匹配次数为2。

    用扩展KMP与自身匹配。

     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<algorithm>
     4 using namespace std;
     5 
     6 const int maxn=2e5+5;
     7 const int mod=1e4+7;
     8 
     9 char s[maxn];
    10 int ext[maxn],nxt[maxn];
    11 
    12 void EKMP(char s[],char t[],int lens,int lent){
    13     int i,j,p,l,k;
    14     nxt[0]=lent;j=0;
    15     while(j+1<lent&&t[j]==t[j+1])j++;
    16     nxt[1]=j;
    17     k=1;
    18     for(i=2;i<lent;i++){
    19         p=nxt[k]+k-1;
    20         l=nxt[i-k];
    21         if(i+l<p+1)nxt[i]=l;
    22         else{
    23             j=max(0,p-i+1);
    24             while(i+j<lent&&t[i+j]==t[j])j++;
    25             nxt[i]=j;
    26             k=i;
    27         }
    28     }
    29 
    30     j=0;
    31     while(j<lens&&j<lent&&s[j]==t[j])j++;
    32     ext[0]=j;k=0;
    33     for(i=1;i<lens;i++){
    34         p=ext[k]+k-1;
    35         l=nxt[i-k];
    36         if(l+i<p+1)ext[i]=l;
    37         else{
    38             j=max(0,p-i+1);
    39             while(i+j<lens&&j<lent&&s[i+j]==t[j])j++;
    40             ext[i]=j;
    41             k=i;
    42         }
    43     }
    44 }
    45 
    46 int main(){
    47     int T;
    48     scanf("%d",&T);
    49     while(T--){
    50         int n;
    51         scanf("%d%s",&n,s);
    52         EKMP(s,s,n,n);
    53         int cnt=0;
    54         for(int i=0;i<n;++i){
    55             cnt=(cnt+ext[i])%mod;
    56         }
    57         printf("%d
    ",cnt);
    58     }
    59     return 0;
    60 }
    View Code
  • 相关阅读:
    数学基础详解 1——微积分
    logistic回归梯度上升优化算法
    决策树
    西瓜书学习笔记(1)——模型评估与选择
    关于map与set的一点理解;
    STL中的set容器的一点总结(转)
    HDOJ 题目分类
    Train Problem I(栈)
    猜数字(规律)
    Change the ball(找规律)
  • 原文地址:https://www.cnblogs.com/cenariusxz/p/6592548.html
Copyright © 2020-2023  润新知