• 线性回归与梯度下降(ML作业)


    Loss函数

    题目一:完成computeCost.m

    function J = computeCost(X, y, theta)
    %COMPUTECOST Compute cost for linear regression
    %   J = COMPUTECOST(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    J = (1 / (2 * m))* sum((X * theta - y).^ 2);
    
    
    % =========================================================================
    
    end
    
    

    直接套用公式编写:

    [J = frac{1}{2m} sum_{i=0}^{m}(wx - y)^2 ]

    Loss函数升级版:computeCostMulti.m

    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    %   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    
    
    J = (1 / (2 * m))* sum((X * theta - y).^ 2);
    
    
    % =========================================================================
    
    end
    
    

    其实写法一模一样……

    GD算法:gradientDescent.m

    function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENT Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENT(X, y, theta, alpha, num_iters) updates theta by 
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCost) and gradient here.
        %
        temp = zeros(length(theta), 1);
        for i = 1:length(theta)
            temp(i, 1) = theta(i, 1) + alpha * (sum((y - X * theta) .* X(:, i))) / length(X);
        end
        theta = temp;
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCost(X, y, theta);
    
    end
    
    end
    
    

    由于当时写题目的时候就直接按照矩阵的写法写,所以其实复杂版写法也是一样的

    GD复杂版算法:gradientDescent.m

    function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha, num_iters)
    %GRADIENTDESCENTMULTI Performs gradient descent to learn theta
    %   theta = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters) updates theta by
    %   taking num_iters gradient steps with learning rate alpha
    
    % Initialize some useful values
    m = length(y); % number of training examples
    J_history = zeros(num_iters, 1);
    
    for iter = 1:num_iters
    
        % ====================== YOUR CODE HERE ======================
        % Instructions: Perform a single gradient step on the parameter vector
        %               theta. 
        %
        % Hint: While debugging, it can be useful to print out the values
        %       of the cost function (computeCostMulti) and gradient here.
        %
    
    
    
        temp = zeros(length(theta), 1);
        for i = 1:length(theta)
            temp(i, 1) = theta(i, 1) + alpha * (sum((y - X * theta) .* X(:, i))) / length(X);
        end
        theta = temp;
    
    
    
    
    
    
        % ============================================================
    
        % Save the cost J in every iteration    
        J_history(iter) = computeCostMulti(X, y, theta);
    
    end
    
    end
    
    

    特征缩放:featureNormalize.m

    function [X_norm, mu, sigma] = featureNormalize(X)
    %FEATURENORMALIZE Normalizes the features in X 
    %   FEATURENORMALIZE(X) returns a normalized version of X where
    %   the mean value of each feature is 0 and the standard deviation
    %   is 1. This is often a good preprocessing step to do when
    %   working with learning algorithms.
    
    % You need to set these values correctly
    X_norm = X;
    mu = zeros(1, size(X, 2));
    sigma = zeros(1, size(X, 2));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: First, for each feature dimension, compute the mean
    %               of the feature and subtract it from the dataset,
    %               storing the mean value in mu. Next, compute the 
    %               standard deviation of each feature and divide
    %               each feature by it's standard deviation, storing
    %               the standard deviation in sigma. 
    %
    %               Note that X is a matrix where each column is a 
    %               feature and each row is an example. You need 
    %               to perform the normalization separately for 
    %               each feature. 
    %
    % Hint: You might find the 'mean' and 'std' functions useful.
    %       
    mu = mean(X);
    sigma = std(X);
    
    for i = 1:length(X)
        X(i, :) = (X(i, :) - mu) ./ sigma;
    end
    X_norm = X;
    
    
    
    
    
    % ============================================================
    
    end
    
    

    公式采用:

    [X = frac{X - mu}{sigma} \ mu:avg \ sigma:std ]

    公式法:normalEqn.m

    function [theta] = normalEqn(X, y)
    %NORMALEQN Computes the closed-form solution to linear regression 
    %   NORMALEQN(X,y) computes the closed-form solution to linear 
    %   regression using the normal equations.
    
    theta = zeros(size(X, 2), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the code to compute the closed form solution
    %               to linear regression and put the result in theta.
    %
    
    % ---------------------- Sample Solution ----------------------
    theta = (X' * X)^-1 * X' * y;
    
    
    
    % -------------------------------------------------------------
    
    
    % ============================================================
    
    end
    
    
  • 相关阅读:
    nginx 安装教程
    php 安装教程
    第一个AWK程序的尝试
    memcached-tool 工具
    java数据库 DBHelper
    Innodb的三大关健特性
    我遇到的一个ClassNotFoundException问题
    storm学习初步
    再探 jQuery
    简单聊一聊正则表达式中的贪婪匹配和非贪婪匹配
  • 原文地址:https://www.cnblogs.com/cell-coder/p/12770879.html
Copyright © 2020-2023  润新知