• 51nod 1336 RMQ逆问题


    RMQ问题是一类区间最值问题,这里给出一个特殊的RMQ问题,初始给定一个n长的排列P,注:n长排列是指有1~n这n个整数构成的一个序列每个整数恰好出现一次。并对这个排列P进行M次查询操作,每次查询形如Query(L,R),每次查询返回排列P中位置在区间[L,R]上所有数中最大的那个数,其中位置的下标从1开始。例如排列P = {3,1,4,2,5},
    那么Query(1,2) = max{3,1}=3,Query(2,4)=max{1,4,2}=4。由于RMQ问题对大家来说实在是太简单了,所以这题要求大家求解一个RMQ的逆问题,即给你排列的长度n,以及M次查询的问题及其结果三元组(Li,Ri,Qi),即Query(Li,Ri)=Qi,询问符合这M次查询的n长排列是否存在。若存在输出“Possible”;否则输出“Impossible”。
    Input
    多组测试数据,第一行一个整数T,表示测试数据数量,1<=T<=5
    之后有T组结构相同的数据:
    每组数据的第一行有两个整数n与M,其中1<=n<=10^9(即1,000,000,000),1<=M<=50
    之后会有M行,每行表示一个三元组Li,Ri,Qi,其中1<=Li<=Ri<=n,1<=Qi<=n
    Output
    每组数据输出一行,即“Possible”或“Impossible”不含引号

    对于一个询问(L,R,Q),能得到的信息是(Q,n]中的数只能在[1,L)或(R,n],Q只能在[L,R]

    因此离散化之后可以转化为最大流,左边的点代表每个数值/数值区间,右边的点代表每个区间,之间连边inf代表此数值可以在此区间内,源点到左边的点连边限制每个数值/数值区间中数值的个数,右边的点连边到汇点限制每个区间内数值的个数,当且仅当最大流为n时有解

    #include<cstdio>
    #include<algorithm>
    const int N=100000,inf=0x3f3f3f3f;
    int es[N],enx[N],ev[N],e0[N],ep;
    int h[N],q[N],S,T;
    inline void adde(int a,int b,int c){
        es[ep]=b;enx[ep]=e0[a];ev[ep]=c;e0[a]=ep++;
        es[ep]=a;enx[ep]=e0[b];ev[ep]=0;e0[b]=ep++;
    }
    bool bfs(){
        int ql=0,qr=0;
        for(int i=0;i<=T;i++)h[i]=0;
        h[S]=1;q[qr++]=S;
        while(ql!=qr){
            int w=q[ql++];
            for(int i=e0[w];i;i=enx[i]){
                int u=es[i];
                if(!h[u]&&ev[i]){
                    h[u]=h[w]+1;
                    q[qr++]=u;
                }
            }
        }
        return h[T];
    }
    int dfs(int w,int f){
        if(w==T)return f;
        int c,u,used=0;
        for(int i=e0[w];i;i=enx[i]){
            u=es[i];
            if(h[u]!=h[w]+1||!ev[i])continue;
            c=f-used;
            if(c>ev[i])c=ev[i];
            c=dfs(u,c);
            used+=c;
            ev[i]-=c;
            ev[i^1]+=c;
            if(used==f)return f;
        }
        if(!used)h[w]=0;
        return used;
    }
    int qs[53][3],xs[107],ps[107],xp,pp;
    bool d[107][107];
    int main(){
        int _T,n,q;
        for(scanf("%d",&_T);_T;_T--){
            scanf("%d%d",&n,&q);
            for(int i=0;i<q;i++)scanf("%d%d%d",qs[i],qs[i]+1,qs[i]+2);
            xp=pp=0;
            xs[xp++]=1;
            xs[xp++]=n+1;
            ps[pp++]=1;
            ps[pp++]=n+1;
            for(int i=0;i<q;i++){
                xs[xp++]=qs[i][2];
                xs[xp++]=qs[i][2]+1;
                ps[pp++]=qs[i][0];
                ps[pp++]=qs[i][1]+1;
            }
            std::sort(xs,xs+xp);
            xp=std::unique(xs,xs+xp)-xs;
            std::sort(ps,ps+pp);
            pp=std::unique(ps,ps+pp)-ps;
            for(int i=0;i<xp;i++)for(int j=0;j<pp;j++)d[i][j]=1;
            for(int i=0;i<q;i++){
                for(int j=0;j<xp-1;j++){
                    if(xs[j]>qs[i][2]){
                        for(int k=0;k<pp-1;k++)if(qs[i][0]<=ps[k]&&ps[k]<=qs[i][1]){
                            d[j][k]=0;
                        }
                    }else if(xs[j]==qs[i][2]){
                        for(int k=0;k<pp-1;k++)if(qs[i][0]>ps[k]||ps[k]>qs[i][1]){
                            d[j][k]=0;
                        }
                    }
                }
            }
            S=xp+pp+1;T=S+1;
            for(int i=1;i<=T;i++)e0[i]=0;
            ep=2;
            for(int i=0;i<xp-1;i++)adde(S,i+1,xs[i+1]-xs[i]);
            for(int i=0;i<pp-1;i++)adde(xp+i+1,T,ps[i+1]-ps[i]);
            for(int i=0;i<xp-1;i++)for(int j=0;j<pp-1;j++)if(d[i][j])adde(i+1,xp+j+1,n);
            int ans=0;
            while(bfs())ans+=dfs(S,inf);
            puts(ans==n?"Possible":"Impossible");
        }
        return 0;
    }
  • 相关阅读:
    【mongoDB运维篇④】Shard 分片集群
    【Linux高频命令专题(11)】cp
    【Linux高频命令专题(10)】mv
    Nginx + Lua + 共享内存
    ngx_lua模块学习示例之waf
    在 Golang 中使用 Protobuf
    openresty package.path require 报错
    ngx_lua 模块
    Lua中的常用语句结构以及函数
    lua日期与时间操作
  • 原文地址:https://www.cnblogs.com/ccz181078/p/5796306.html
Copyright © 2020-2023  润新知