题目描述
Two undirected simple graphs and where are isomorphic when there exists a bijection on V satisfying if and only if {x, y} ∈ E2.
Given two graphs and , count the number of graphs satisfying the following condition:
* .
* G1 and G are isomorphic.
输入描述:
The input consists of several test cases and is terminated by end-of-file.
The first line of each test case contains three integers n, m1 and m2 where |E1| = m1 and |E2| = m2.
The i-th of the following m1 lines contains 2 integers ai and bi which denote {ai, bi} ∈ E1.
The i-th of the last m2 lines contains 2 integers ai and bi which denote {ai, bi} ∈ E2.
输出描述:
For each test case, print an integer which denotes the result.
示例1
输入
3 1 2
1 3
1 2
2 3
4 2 3
1 2
1 3
4 1
4 2
4 3
输出
2
3
备注:
* 1 ≤ n ≤ 8
*
* 1 ≤ ai, bi ≤ n
* The number of test cases does not exceed 50.
题意 : 给你两个大小为 N 的图,要求寻找既是B的子图,又和A是同构的图的数量
思路分析:刚开始一直不是很懂它的题意是要干嘛,比赛后也看了很长时间才懂一些,1-2 3 和 1 2-3 是属于同构关系的,因为都是两个点连着,一个点单独出现,因此这里只要N!枚举对应一下就可以了
1 . hash去判重
#include <bits/stdc++.h> using namespace std; #define ll unsigned long long const ll maxn = 1e6+5; const ll mod = 1e9+7; const double eps = 1e-9; const double pi = acos(-1.0); const ll inf = 0x3f3f3f3f; ll n, m1, m2; bool mp1[10][10], mp2[10][10]; ll arr[10], d[10]; set<ll>s; void solve() { for(ll i = 1; i <= n; i++) arr[i] = i; do{ for(ll i = 1; i <= n; i++) d[i] = arr[i]; ll sum = 0; for(ll i = 1; i <= n; i++){ for(ll j = i+1; j <= n; j++){ if (mp2[i][j] && mp1[d[i]][d[j]]){ sum++; } } } if (sum == m1){ ll x = 0; for(ll i = 1; i <= n; i++){ for(ll j = i+1; j <= n; j++){ if (mp1[d[i]][d[j]]) { x+=(1LL<<(i*(n-1)+j)); } } } //printf("++++ %llu ", x); s.insert(x); } }while(next_permutation(arr+1, arr+1+n)); } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); ll a, b; while(~scanf("%d%d%d", &n, &m1, &m2)){ memset(mp1, false, sizeof(mp1)); memset(mp2, false, sizeof(mp2)); for(ll i = 1; i <= m1; i++){ scanf("%d%d", &a, &b); mp1[a][b] = mp1[b][a] = true; } for(ll i = 1; i <= m2; i++){ scanf("%d%d", &a, &b); mp2[a][b] = mp2[b][a] = true; } s.clear(); solve(); printf("%d ", s.size()); } return 0; }
2 . 直接这样考虑,就是A图自身的同构在通过B去计算的时候,会重复算的,因此除一下就可以了
using namespace std; #define ll unsigned long long const ll maxn = 1e6+5; const ll mod = 1e9+7; const double eps = 1e-9; const double pi = acos(-1.0); const ll inf = 0x3f3f3f3f; ll n, m1, m2; bool mp1[10][10], mp2[10][10]; ll arr[10], d[10]; set<ll>s; int a1, a2; void solve() { for(ll i = 1; i <= n; i++) arr[i] = i; do{ for(ll i = 1; i <= n; i++) d[i] = arr[i]; ll sum = 0; for(ll i = 1; i <= n; i++){ for(ll j = i+1; j <= n; j++){ if (mp2[i][j] && mp1[d[i]][d[j]]){ sum++; } } } if (sum == m1){ a1++; } }while(next_permutation(arr+1, arr+1+n)); } void solve2() { for(ll i = 1; i <= n; i++) arr[i] = i; do{ for(ll i = 1; i <= n; i++) d[i] = arr[i]; ll sum = 0; for(ll i = 1; i <= n; i++){ for(ll j = i+1; j <= n; j++){ if (mp1[i][j] && mp1[d[i]][d[j]]){ sum++; } } } if (sum == m1){ a2++; } }while(next_permutation(arr+1, arr+1+n)); } int main() { //freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout); ll a, b; while(~scanf("%d%d%d", &n, &m1, &m2)){ memset(mp1, false, sizeof(mp1)); memset(mp2, false, sizeof(mp2)); for(ll i = 1; i <= m1; i++){ scanf("%d%d", &a, &b); mp1[a][b] = mp1[b][a] = true; } for(ll i = 1; i <= m2; i++){ scanf("%d%d", &a, &b); mp2[a][b] = mp2[b][a] = true; } s.clear(); a1 = a2 = 0; solve(); solve2(); printf("%d ", a1/a2); } return 0; }