• Manacher 学习


    推荐博客 :https://blog.csdn.net/zzkksunboy/article/details/72600679

    作用

    线性时间解决最长回文子串问题。

    思想

    Manacher充分利用了回文的性质,从而达到线性时间。


    首先先加一个小优化,就是在每两个字符(包括头尾)之间加没出现的字符(如#),这样所有字符串长度就都是奇数了,方便了很多。
    abcde->#a#b#c#d#e#


    记录p[i]表示i能向两边推(包括i)的最大距离,如果能求出p,则答案就是max(p)-1了(以i为中点的最长回文为2*p[i]-1,但这是加过字符后的答案,把加进去的字符干掉,最长回文就是p[i]-1)。

    我们假设p[1~i-1]已经求好了,现在要求p[i]:

    假设当前能达到的最右边为R,对应的中点为pos,j是i的对称点。

    1.当i<R时
    这里写图片描述
    由于L~R是回文,所以p[i]=p[j](i的最长回文和j的最长回文相同)。
    这里写图片描述
    这种情况是另一种:j的最长回文跳出L了。那么i的最长回文就不一定是j的最长回文了,但蓝色的肯定还是满足的。

    综上所述,p[i]=min(p[2*pos-i],R-i)。
    2.当i>=R时
    由于后面是未知的,于是只能暴力处理了。

     

    效率

    复杂度是 O(n)的

    因为R不会减小,每次暴力处理的时候,p[i]增大多少,就说明R增大多少,而R最多增加len次。

    核心代码:

    void manacher() {
        
        now[0] = '$';
        for(ll i = 1; i <= 2*len; i += 2){
            now[i] = '#';
            now[i+1] = s[(i+1)/2];
        }
        now[2*len+1] = '#';
        now[2*len+2] = '@';
        now[2*len+3] = '';
        
        ll len2 = len*2+1;
        ll mx = 0, id = 0;
        for(ll i = 1; i <= len2; i++){
            if (i <= mx) p[i] = min(p[2*id-i], mx-i); 
            else p[i] = 1;
            while(i+p[i]<=len2 && i-p[i]>=1 && now[i-p[i]] == now[i+p[i]]) { 
                p[i]++;
            } 
            
            if (mx < i+p[i]) {mx = i+p[i]; id = i;} 
        }   
    }
    
    东北日出西边雨 道是无情却有情
  • 相关阅读:
    js数组的迭代
    js检测对象的类型
    java基本数据类型及相互间的转换
    Mybatis Jdbctype JavaType 类型转换器
    Android TableLayout
    android:id设置的三种方式区别在哪?
    android:layout_gravity 和 android:gravity 的区别
    Android LinearLayout
    Log4j 分别使用不同的配置文件
    Extjs GridPanel 中放入 Combox显示问题
  • 原文地址:https://www.cnblogs.com/ccut-ry/p/9364613.html
Copyright © 2020-2023  润新知