1、
df.head() Here we import pandas using the alias 'pd', then we read in our data. df.head - shows us the first 5 rows and headers - it gives us an idea what to expect. df.tail - shows us the last 5 rows
2、
n [1]: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], ...: 'B': ['B0', 'B1', 'B2', 'B3'], ...: 'C': ['C0', 'C1', 'C2', 'C3'], ...: 'D': ['D0', 'D1', 'D2', 'D3']}, ...: index=[0, 1, 2, 3]) ...: ` In [2]: df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], ...: 'B': ['B4', 'B5', 'B6', 'B7'], ...: 'C': ['C4', 'C5', 'C6', 'C7'], ...: 'D': ['D4', 'D5', 'D6', 'D7']}, ...: index=[4, 5, 6, 7]) ...: In [3]: df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'], ...: 'B': ['B8', 'B9', 'B10', 'B11'], ...: 'C': ['C8', 'C9', 'C10', 'C11'], ...: 'D': ['D8', 'D9', 'D10', 'D11']}, ...: index=[8, 9, 10, 11])
In frames = [df1, df2, df3]
In [5]: result = pd.concat(frames)
result = df1.append([df2, df3])
2、copy and value_counts
df2 = df.copy() df2.DATE.value_counts().sort_index() //sort by index data_print = data['vote_count'].value_counts().sort_index()
df['Amount'] = pd.to_numeric(df['Amount'])
3, add del
del df2['column_name']
del df2['column_name']
del df2['column_name']
df.insert(loc=0, column='Country', value='UK')
data.insert(0, '性别', data.pop('gender'))#pop返回删除的列,插入到第0列,并取新名为'性别'
4、筛选:
bool = dt.str.contains # df 是Series类型,不是DataFrame类型 #返回的是True,False #获取筛选数据 xuan_data =dt[bool] #True的