• The Unique MST(次小生成树)


    The Unique MST

    Description
    Given a connected undirected graph, tell if its minimum spanning tree is unique.
    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V’, E’), with the following properties:
    1. V’ = V.
    2. T is connected and acyclic.
    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E’) of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E’.
    Input
    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
    Output
    For each input, if the MST is unique, print the total cost of it, or otherwise print the string ‘Not Unique!’.
    Sample Input
    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    Sample Output
    3
    Not Unique!
    思路:
    多组数据
    次小生成树模板

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=10010;
    int t,n,m,father[110],b[110][110],c[110][110];
    bool flag[maxn],in[110][110];
    struct node
    {
        int x;
        int y;
        int w;
        bool operator < (node tmp)const
        {
            return w<tmp.w;
        }
    }a[maxn];
    int find(int x)
    {
        if(x!=father[x])
        father[x]=find(father[x]);
        return father[x];
    }
    int kruskal()
    {
        memset(flag,0,sizeof(flag));
        memset(in,0,sizeof(in));
        int sum=0,v=0;sort(a+1,a+m+1);
        for(int i=1;i<=n;i++)
        father[i]=i;
        for(int i=1;i<=m;i++)
        {
            int f1=find(a[i].x);
            int f2=find(a[i].y);
            if(f1!=f2)
            {
                father[f2]=f1;
                sum++;flag[i]=1;
                in[a[i].x][a[i].y]=in[a[i].y][a[i].x]=1;
                v+=a[i].w;
            }
            if(sum==n-1) break;
        }
        return v;
    }
    void dfs(int star,int now,int from,int maxx)
    {
        b[star][now]=maxx;
        for(int i=1;i<=n;i++)
        {
            if(!in[now][i]) continue;
            if(i==from) continue;
            dfs(star,i,now,max(maxx,c[now][i]));
        }
    }
    void prepare()
    {
        for(int i=1;i<=n;i++)
        dfs(i,i,i,0);
    }
    int main()
    {
        int x,y,z;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            memset(a,0,sizeof(a));
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&x,&y,&z);
                a[i].x=x,a[i].y=y,a[i].w=z;
                c[x][y]=c[y][x]=z;
            }
            int minn=kruskal(),ans=0x7fffffff;
            prepare();
            for(int i=1;i<=m;i++)
            {
                if(flag[i]) continue;
                int u=a[i].x,v=a[i].y;
                ans=min(ans,minn+a[i].w-b[u][v]);
            }
            if(ans==minn) printf("Not Unique!
    ");
            else printf("%d
    ",minn);
        }
        return 0;
    }
  • 相关阅读:
    GROUP BY 和 ORDER BY一起使用
    MySQL中表的复制以及大型数据表的备份教程
    常用sql
    MySQL 数据类型(float)的注意事项
    MySQL VARCHAR字段最大长度到底是多少
    设计-Int(4)和Int(11)谁更美
    5.Flask-Migrate
    4.alembic数据迁移工具
    3.Flask-SQLAlchemy
    2.Flask jinjia2模板
  • 原文地址:https://www.cnblogs.com/cax1165/p/6070866.html
Copyright © 2020-2023  润新知