题目:.一个整数数组a,长度为n,将其分为m份,使各份的和相等,求m的最大值
比如{3,2,4,3,6} 可以分成{3,2,4,3,6} m=1;
{3,6}{2,4,3} m=2
{3,3}{2,4}{6} m=3 所以m的最大值为3
解答:找了半天没有更好的解法,以下两个思路供参考。
基本思想都是
1求出数组和SUM。
2假设可以分成m组,找到一个合适的m.
m的取值为sum%m=0,m<=sum/max(a[i])
3 从大到小验证找到一个可行的m值.
此过程可以用递归。f(a,m)=f(a-set,m-1)
思路一:http://blog.csdn.net/jarvis_xian/article/details/6431010
将整个数组作为一个集合,最大的可能值就是集合的大小了,最小肯定是1,那么从2开始一次判断。如果集合可被k等分,那么首先集合的和能够被k整除,如果这个条件满足,则重复k-1次从这个集合中取出和为sum/k的子集合。
取子集合的算法是一个递归的思想,详见153楼其他几个题目都是比较经典的问题,不赘述。
思路二:http://blog.csdn.net/v_july_v/article/details/6870251
ANSWER
Two restrictions on m, 1) 1 <= m <= n; 2) Sum(array) mod m = 0
NOTE: no hint that a[i]>0, so m could be larger than sum/max;
So firstly prepare the candidates, then do a brute force search on possible m’s.
In the search , a DP is available, since if f(array, m) = OR_i( f(array-subset(i), m) ), where Sum(subset(i)) = m.
int maxShares(int a[], int n) {
int sum = 0;
int i, m;
for (i=0; i<n; i++) sum += a[i];
for (m=n; m>=2; m--) {
if (sum mod m != 0) continue;
int aux[n]; for (i=0; i<n; i++) aux[i] = 0;
if (testShares(a, n, m, sum, sum/m, aux, sum/m, 1)) return m;
}
return 1;
}
int testShares(int a[], int n, int m, int sum, int groupsum, int[] aux, int goal, int groupId) {
if (goal == 0) {
groupId++;
if (groupId == m+1) return 1;
}
for (int i=0; i<n; i++) {
if (aux[i] != 0) continue;
aux[i] = groupId;
if (testShares(a, n, m, sum, groupsum, aux, goal-a[i], groupId)) {
return 1;
}
aux[i] = 0;
}
}
Please do edge cutting yourself, I’m quite enough of this...