• 大数据处理的方法


    感觉基本思想就是hash+桶划分。


    比较重要的是桶划分(数据量较大,适合topN问题),位图(数据量较小使用),堆(数据量较小),字典树(数据量大,种类少)


    类型包括 可以一次读入内存的,不可以一次读入内存的。


    可以一次读入内存的:位图(数据量较小使用),堆(数据量较小),字典树(数据量大,种类少)

    不可以:桶划分,字典树(数据量大,种类少)



    一  桶划分

    原理:

    (1)利用hash进行桶划分把数据分成小的部分。

    (2)求出小文件的topN

               1 使用计数排序得到频率

               2 构造map树

                对于每个小文件M,得到map树。

                求出每个小文件的topN,使用堆结构。

                使用N大小的堆 (MlogN)


    (3)然后进行归并。


    使用范围:top(N)问题

    例子

    1、海量日志数据,提取出某日访问百度次数最多的那个IP。

    首先是这一天,并且是访问百度的日志中的IP取出来,逐个写入到一个大文件中。注意到IP是32位的,最多有个2^32个IP。同样可以采用映射的方法, 比如模1000,把整个大文件映射为1000个小文件,再找出每个小文中出现频率最大的IP(可以采用hash_map进行频率统计,然后再找出频率最大 的几个)及相应的频率。然后再在这1000个最大的IP中,找出那个频率最大的IP,即为所求。

    或者如下阐述(雪域之鹰):
    算法思想:分而治之+Hash
    1.IP地址最多有2^32=4G种取值情况,所以不能完全加载到内存中处理;
    2.可以考虑采用“分而治之”的思想,按照IP地址的Hash(IP)%1024值,把海量IP日志分别存储到1024个小文件中。这样,每个小文件最多包含4MB个IP地址;
    3.对于每一个小文件,可以构建一个IP为key,出现次数为value的Hash map,同时记录当前出现次数最多的那个IP地址;
    4.可以得到1024个小文件中的出现次数最多的IP,再依据常规的排序算法得到总体上出现次数最多的IP;

    2、搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。

        假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

    典型的Top K算法,还是在这篇文章里头有所阐述,详情请参见:十一、从头到尾彻底解析Hash表算法。

    文中,给出的最终算法是:
    第一步、先对这批海量数据预处理,在O(N)的时间内用Hash表完成统计(之前写成了排序,特此订正。July、2011.04.27);
    第二步、借助堆这个数据结构,找出Top K,时间复杂度为N‘logK。
    即,借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别 和根元素进行对比所以,我们最终的时间复杂度是:O(N) + N’*O(logK),(N为1000万,N’为300万)。ok,更多,详情,请参考原文。

    或者:采用trie树,关键字域存该查询串出现的次数,没有出现为0。最后用10个元素的最小推来对出现频率进行排序。

    3、有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

    方案:顺序读文件中,对于每个词x,取hash(x)%5000,然后按照该值存到5000个小文件(记为x0,x1,…x4999)中。这样每个文件大概是200k左右。

    如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。
    对每个小文件,统计每个文件中出现的词以及相应的频率(可以采用trie树/hash_map等),并取出出现频率最大的100个词(可以用含100个结 点的最小堆),并把100个词及相应的频率存入文件,这样又得到了5000个文件。下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。



    二 双层桶划分

    适用范围:第k大,中位数,不重复或重复的数字

    基本原理及要点:多次使用桶划分。

    因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

    扩展:
    问题实例:
    1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。
    有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

    2).5亿个int找它们的中位数。
    这个例子比上面那个更明显。首先我们 将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第 几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

    实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受 的程度。即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里 的数的个数只有2^20,就可以直接利用direct addr table进行统计了。



    四 位图(类似计数排序)

    适用范围:统计每个的出现次数,使用位图法判断整形数组是否存在重复


    6、在2.5亿个整数中找出不重复的整数,注,内存不足以容纳这2.5亿个整数。

    方案1:采用2-Bitmap(每个数分配2bit,00表示不存在,01表示出现一次,10表示多次,11无意义)进行,共需内存2^32 * 2 bit=1 GB内存,还可以接受。然后扫描这2.5亿个整数,查看Bitmap中相对应位,如果是00变01,01变10,10保持不变。所描完事后,查看 bitmap,把对应位是01的整数输出即可。

    方案2:也可采用与第1题类似的方法,进行划分小文件的方法。然后在小文件中找出不重复的整数,并排序。然后再进行归并,注意去除重复的元素。


    三 字典树


    五  bloom filter

    适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集


    Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。

    问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?

    根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340 亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些 urlip是一一对应的,就可以转换成ip,则大大简单了。


    六 倒排索引

    适用范围:搜索引擎,关键字查询

    基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

    以英文为例,下面是要被索引的文本:
    T0 = “it is what it is”
    T1 = “what is it”
    T2 = “it is a banana”

    我们就能得到下面的反向文件索引:

    “a”:      {2}
    “banana”: {2}
    “is”:     {0, 1, 2}
    “it”:     {0, 1, 2}
    “what”:   {0, 1}

    检索的条件”what”,”is”和”it”将对应集合的交集。

    正向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序 频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档 指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

    扩展:
    问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。


    八、外排序

    适用范围:大数据的排序,去重

    基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树

    扩展:

    问题实例:
    1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

    这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。



    九、trie树 即字典树

    适用范围:数据量大,重复多,但是数据种类小可以放入内存

    基本原理及要点:实现方式,节点孩子的表示方式

    扩展:压缩实现。

    问题实例:
    1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序。
    2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?
    3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。
    十、分布式处理 mapreduce

    适用范围:数据量大,但是数据种类小可以放入内存

    基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

    扩展:
    问题实例:
    1).The canonical example application of MapReduce is a process to count the appearances of
    each different word in a set of documents:
    2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。
    3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

    桶划分










    本文内容大部分来源自http://blog.csdn.net/v_JULY_v。有少量的修改和总结。


  • 相关阅读:
    用Python发生RestFul API POST和GET请求
    C# 8.0中的新功能
    A股数据分析之收集数据:股票列表和股价
    A股数据分析之收集数据:公司详细信息
    VS 2019中修改C#语言版本
    Weak Event Manager
    在WPF中使用MVVM的方式关闭窗口
    C# GDI绘制仪表盘(纯代码实现)
    C#中实现文件拖放打开的方法
    C#设置自定义文件图标实现双击启动
  • 原文地址:https://www.cnblogs.com/catkins/p/5270692.html
Copyright © 2020-2023  润新知