• 第7次实践作业 25组


    一、在树莓派中安装opencv库

    参考资料:
    Raspbian Stretch: Install OpenCV 3 + Python on your Raspberry Pi

    (1)扩展文件系统

    sudo raspi-config
    

    1.选择“高级选项”菜单项

    2.接下来选择“扩展文件系统”

    3.按Enter键,选择Finish,然后重新启动Pi


    4.验证磁盘是否已扩展,并检查输出

    df -h
    

    可以看重启后,Raspbian文件系统已扩展为包括所有16GB的micro-SD卡,已经使用43%

    5.删除LibreOffice和Wolfram引擎以释放Pi上的一些空间

    sudo apt-get purge wolfram-engine
    sudo apt-get purge libreoffice *
    sudo apt-get clean
    sudo apt-get autoremove
    

    可以看到回收了将近1.6G

    (2)安装依赖

    1.换源

    软件更新源

    sudo nano /etc/apt/sources.list 
    deb http://mirrors.ustc.edu.cn/raspbian/raspbian/ buster main contrib non-free rpi
    

    系统更新源

    sudo nano /etc/apt/sources.list.d/raspi.list  
    deb http://mirrors.ustc.edu.cn/archive.raspberrypi.org/debian/ buster main ui
    

    2.换完源以后就不会出现下列软件包有未满足的依赖关系的问题了

    # 更新软件源,更新软件
    sudo apt-get update && sudo apt-get upgrade
    
    # Cmake等开发者工具
    sudo apt-get install build-essential cmake pkg-config
    
    # 图片I/O包
    sudo apt-get install libjpeg-dev libtiff5-dev libjasper-dev libpng12-dev
    
    # 视频I/O包
    sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    sudo apt-get install libxvidcore-dev libx264-dev
    
    # OpenCV用于显示图片的子模块需要GTK
    sudo apt-get install libgtk2.0-dev libgtk-3-dev
    
    # 性能优化包
    sudo apt-get install libatlas-base-dev gfortran
    
    # 安装 Python2.7 & Python3
    sudo apt-get install python2.7-dev python3-dev
    

    (3)下载OpenCV源代码

    1.下载源代码

    这边我们尝试在树莓派内和windows都下载源代码,树莓派内会出现无法解压的问题,而在windows会提示网络错误无法下载
    从同学那边获得了下载好的两个zip包,通过在上一次实践中配置好的ftp传入传入树莓派

    2.解压

    cd ~
    unzip opencv-4.3.0.zip
    unzip opencv_contrib-4.3.0.zip
    

    注意:确保 opencv和 opencv_contrib版本相同
    unzip命令解析文件出现问题的话,可使用jar命令来解析该文件

    3.准备编译环境

    不知道出于什么原因,我们使用python3安装虚拟机却在安装信息中检测不到python3,所以这边我们使用的python2安装虚拟机

    # 安装pip
    wget https://bootstrap.pypa.io/get-pip.py
    sudo python get-pip.py
    sudo python3 get-pip.py
    
    # 安装虚拟环境,防止依赖冲突
    sudo pip install virtualenv virtualenvwrapper
    sudo rm -rf ~/.cache/pip
    
    # 更新〜/ .profile文件
    nano ~/.profile
    export WORKON_HOME=$HOME/.virtualenvs
    export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
    export VIRTUALENVWRAPPER_VIRTUALENV=/usr/local/bin/virtualenv
    source /usr/local/bin/virtualenvwrapper.sh
    export VIRTUALENVWRAPPER_ENV_BIN_DIR=bin
    
    # 每次新开终端,需要虚拟环境时都要运行
    source ~/.profile
    
    # 创建虚拟环境cv,这里我们用的是python2
    mkvirtualenv cv -p python2
    
    # 进入虚拟环境
    workon cv
    
    # 安装numpy,我们使用的是1.16.4版本
    pip install numpy==1.16.4
    

    4.编译OpenCV

    要确保已经进入了cv虚拟环境,命令提示符开头有(cv)

    # 这里我们用的是4.3.0版本
    
    cd ~/opencv-4.3.0/
    mkdir build
    cd build
    
    # 设置CMake构建选项
    cmake -D CMAKE_BUILD_TYPE=RELEASE 
        -D CMAKE_INSTALL_PREFIX=/usr/local 
        -D INSTALL_PYTHON_EXAMPLES=ON 
        -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib-4.3.0/modules 
        -D BUILD_EXAMPLES=ON ..
    

    为了避免编译时内存不足导致的CPU挂起,调整swap交换文件大小:

    # CONF_SWAPSIZE由100改为1024,编译完成后改回来
    sudo nano /etc/dphys-swapfile
    # 重启swap服务
    sudo /etc/init.d/dphys-swapfile stop
    sudo /etc/init.d/dphys-swapfile start
    

    到这里就完成了大部分准备工作,开始编译:

    # 开始编译,很耗时
    make -j4
    

    终于成功啦!!!这边遇到了一些问题

    5.安装OpenCV

    sudo make install
    sudo ldconfig
    

    检查OpenCV的安装位置

    ls -l /usr/local/lib/python2.7/site-packages/
    cd ~/.virtualenvs/cv/lib/python2.7/site-packages/
    ln -s /usr/local/lib/python2.7/site-packages/cv2.so cv2.so
    

    6.测试OpenCV

    source ~/.profile
    workon cv
    python
    import cv2
    cv2.__version__
    

    二、使用opencv和python控制树莓派的摄像头

    (1)测试树莓派相机

    raspistill -o output.jpg
    

    (2)安装picreame

    source ~/.profile 
    workon cv 
    pip install "picamera[array]"
    

    (3)拍照测试

    nano takephoto.py
    python takephoto.py
    

    takephoto.py

    # import the necessary packages
    from picamera.array import PiRGBArray
    from picamera import PiCamera
    import time
    import cv2
     
    # initialize the camera and grab a reference to the raw camera capture
    camera = PiCamera()
    rawCapture = PiRGBArray(camera)
     
    # allow the camera to warmup
    time.sleep(5)
     
    # grab an image from the camera
    camera.capture(rawCapture, format="bgr")
    image = rawCapture.array
     
    # display the image on screen and wait for a keypress
    cv2.imshow("Image", image)
    cv2.waitKey(0)
    

    三、利用树莓派的摄像头实现人脸识别

    (1)安装所需依赖库

    source ~/.profile 
    workon cv 
    pip install dlib
    pip install face_recognition
    

    dlib下载成功

    但是face_recognition一直超时

    从网上下载了两个文件

    通过ftp传入树莓派后进行安装,这边还是有点慢,我们使用豆瓣源进行加速

    python -m pip install face_recognition_models-0.3.0-py2.py3-none-any.whl -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    
    python -m pip install face_recognition-1.3.0-py2.py3-none-any.whl -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
    

    测试安装

    python
    import face_recognition
    
    


    安装成功啦

    (2)切换到代码和图片所在文件夹运行代码

    1.将代码和图片传入树莓派

    2.运行代码

    facerec_on_raspberry_pi.py

    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    image = face_recognition.load_image_file("Einstein_origin.jpg")
    face_encoding = face_recognition.face_encodings(image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
    
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
    
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
    
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Einstein"
            print("I see someone named {}!".format(name))
    

    facerec_from_webcam_faster.py

    import face_recognition
    import cv2
    import numpy as np
    
    # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
    # other example, but it includes some basic performance tweaks to make things run a lot faster:
    #   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
    #   2. Only detect faces in every other frame of video.
    
    # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
    # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
    # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.
    
    # Get a reference to webcam #0 (the default one)
    video_capture = cv2.VideoCapture(0)
    
    # Load a sample picture and learn how to recognize it.
    Jay_Chou_image = face_recognition.load_image_file("Jay_Chou.jpg")
    Jay_Chou_face_encoding = face_recognition.face_encodings(Jay_Chou_image)[0]
    
    # Load a second sample picture and learn how to recognize it.
    JJ_Lin_image = face_recognition.load_image_file("JJ_Lin.jpg")
    JJ_Lin_face_encoding = face_recognition.face_encodings(JJ_Lin_image)[0]
    
    # Create arrays of known face encodings and their names
    known_face_encodings = [
        Jay_Chou_encoding,
        JJ_Lin_face_encoding
    ]
    
    known_face_names = [
        "Jay_Chou",
        "JJ_Lin"
    ]
    
    
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    face_names = []
    
    process_this_frame = True
    
    while True:
    
        # Grab a single frame of video
        ret, frame = video_capture.read()
    
        # Resize frame of video to 1/4 size for faster face recognition processing
        small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
    
        # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
        rgb_small_frame = small_frame[:, :, ::-1]
    
        # Only process every other frame of video to save time
        if process_this_frame:
    
            # Find all the faces and face encodings in the current frame of video
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
    
            face_names = []
            for face_encoding in face_encodings:
                # See if the face is a match for the known face(s)
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = "Unknown"
    
                # # If a match was found in known_face_encodings, just use the first one.
                # if True in matches:
                #     first_match_index = matches.index(True)
                #     name = known_face_names[first_match_index]
                # Or instead, use the known face with the smallest distance to the new face
                face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distances)
                if matches[best_match_index]:
                    name = known_face_names[best_match_index]
    
                face_names.append(name)
    
        process_this_frame = not process_this_frame
    
        # Display the results
        for (top, right, bottom, left), name in zip(face_locations, face_names):
            # Scale back up face locations since the frame we detected in was scaled to 1/4 size
            top *= 4
            right *= 4
            bottom *= 4
            left *= 4
    
            # Draw a box around the face
            cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
    
            # Draw a label with a name below the face
            cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
    
        # Display the resulting image
        cv2.imshow('Video', frame)
    
        # Hit 'q' on the keyboard to quit!
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    # Release handle to the webcam
    video_capture.release()
    cv2.destroyAllWindows()
    




    四、结合微服务的进阶任务

    (1)Docker的安装和配置

    1.安装

    sudo curl -sSL https://get.docker.com | sh
    

    2.添加用户到docker组

    sudo usermod pi -aG docker
    

    3.配置

    # config cgroup for Docker
    echo Adding " cgroup_enable=cpuset cgroup_enable=memory" to /boot/cmdline.txt
    sudo cp /boot/cmdline.txt /boot/cmdline_backup.txt
    # if you encounter problems, try changing cgroup_memory=1 to cgroup_enable=memory.
    orig="$(head -n1 /boot/cmdline.txt) cgroup_enable=cpuset cgroup_memory=1"
    echo $orig | sudo tee /boot/cmdline.txt
    
    sudo reboot
    

    (2)在opencv的docker容器中运行示例代码facerec_on_raspberry_pi.py

    1.下载示例镜像并开启容器

    docker run -it 
    --name face_recognition 
    --device /dev/vchiq 
    registry.cn-hangzhou.aliyuncs.com/denverdino/face_recognition 
    bash
    

    2.查看并进入代码存放目录

    ls
    cd face_recognition/examples/
    

    3.示例代码facerec_on_raspberry_pi.py

    # This is a demo of running face recognition on a Raspberry Pi.
    # This program will print out the names of anyone it recognizes to the console.
    
    # To run this, you need a Raspberry Pi 2 (or greater) with face_recognition and
    # the picamera[array] module installed.
    # You can follow this installation instructions to get your RPi set up:
    # https://gist.github.com/ageitgey/1ac8dbe8572f3f533df6269dab35df65
    
    import face_recognition
    import picamera
    import numpy as np
    
    # Get a reference to the Raspberry Pi camera.
    # If this fails, make sure you have a camera connected to the RPi and that you
    # enabled your camera in raspi-config and rebooted first.
    camera = picamera.PiCamera()
    camera.resolution = (320, 240)
    output = np.empty((240, 320, 3), dtype=np.uint8)
    
    # Load a sample picture and learn how to recognize it.
    print("Loading known face image(s)")
    obama_image = face_recognition.load_image_file("obama_small.jpg")
    obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
    
    # Initialize some variables
    face_locations = []
    face_encodings = []
    
    while True:
        print("Capturing image.")
        # Grab a single frame of video from the RPi camera as a numpy array
        camera.capture(output, format="rgb")
    
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(output)
        print("Found {} faces in image.".format(len(face_locations)))
        face_encodings = face_recognition.face_encodings(output, face_locations)
    
        # Loop over each face found in the frame to see if it's someone we know.
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            match = face_recognition.compare_faces([obama_face_encoding], face_encoding)
            name = "<Unknown Person>"
    
            if match[0]:
                name = "Barack Obama"
    
            print("I see someone named {}!".format(name))
    

    4.运行代码

    python3 facerec_on_raspberry_pi.py
    

    5.结果如下

    (3)在opencv的docker容器中运行示例代码facerec_from_webcam_faster.py

    这边使用docker hub上的opencv的镜像

    1.权限分配

    # 允许所有用户访问显示接口
    xhost +
    

    2.创建容器

    docker run -it --rm  
     --device=/dev/video0  
     -e DISPLAY=unix$DISPLAY  
     -v /tmp/.X11-unix:/tmp/.X11-unix  
     -v /home/pi/Desktop/face-recognition:/face-recognition  
     demosense/raspberrypi3-opencv 
     bash
    

    3.安装依赖

    pip install picamera dlib face_recognition numpy
    apt install x11-xserver-utils
    

    4.运行代码facerec_from_webcam_faster.py

    python facerec_from_webcam_faster.py
    

    5.结果如下

    五、遇到的问题及其解决方法

    (1)安装时提示下列软件包有未满足的依赖关系

    解决方法:
    一个方法是:

    sudo apt-get install aptitude
    sudo aptitude install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
    

    但是在cmake或make -j4两个步骤可能会出问题,所以还是不建议用这种方法
    我们就是在cmake那一步出了问题

    另外一个方法是换源:
    软件更新源

    sudo nano /etc/apt/sources.list 
    deb http://mirrors.ustc.edu.cn/raspbian/raspbian/ buster main contrib non-free rpi
    

    系统更新源

    sudo nano /etc/apt/sources.list.d/raspi.list  
    deb http://mirrors.ustc.edu.cn/archive.raspberrypi.org/debian/ buster main ui
    

    换完源以后就不会出现软件包有未满足的依赖关系的问题啦

    (2)解压zip包的时候遇到如下问题

    这边应该是两个zip包下载被中断导致文件不完整,不知道是什么原因,在树莓派和windows下载都不成功
    解决方法:
    同学分享了下载好的zip包

    (3)编译OpenCV遇到的问题

    • 问题1:

    解决方法:
    参考博客:
    安装OpenCV时提示缺少boostdesc_bgm.i文件的问题解决方案
    把博客中给的缩包解压到目录opencv_contrib/modules/xfeatures2d/src/下即可

    • 问题2:

    解决方法:

    从/home/pi/opencv-4.3.0/modules/features2d/test 拷贝至/home/pi/opencv_contrib-4.3.0/modules/xfeatures2d/test

    将/home/pi/opencv_contrib-4.3.0/modules/xfeatures2d/test下的test_features2d.cpp中的

    这两行,改成

    #include "test_detectors_regression.impl.hpp"
    #include "test_descriptors_regression.impl.hpp"
    

    在test_rotation_and_scale_invariance.cpp下也做如下修改

    (4)虽然使用Python3安装,但是显示出来的只有Python2,在编译安装之后发现根本没有指定的site-packages目录

    解决方法:
    一开始认为可能是某一步没做好,重装了系统,进行了虚拟机环境配置等检查,但是还是一样的结果,最后决定使用Python2.7

    (5)验证安装时输入import cv2,提示ImportError: numpy.core.multiarray failed to import

    原因:决定使用Python2安装之后,安装了比较新版本的numpy,版本不匹配
    解决方法:

    # 卸载已安装的numpy
    pip unstall numpy
    
    # 下载1.16.4版本的numpy
    pip install numpy==1.16.4
    

    但是又出现了一个小问题:ERROR: THESE PACKAGES DO NOT MATCH THE HASHES FROM THE REQUIREMENTS FILE.
    解决方法:

    # 使用如下命令下载
    pip install --upgrade numpy==1.16.4
    

    再编译安装,就成功啦

    (6)利用树莓派的摄像头实现人脸识别facerec_from_webcam_faster.py遇到IndexError: list index out of range

    原因:
    应该是图片的原因,我们本来选择使用这张图,可能的原因是侧脸或者图片不清晰

    解决方法:
    修改了代码换成了清晰的正脸图,就成功啦

    (7)在结合微服务的进阶任务部分无法下载face_recognition

    直接使用pip3 install face_recognition会超时报错
    解决方法:
    尝试使用离线下载的方式
    但是在容器中使用离线下载的方式会出现无法识别命令的问题
    尝试更新并下载命令(这边耗时3小时)还是不行
    就决定换一种方式做第四部分了

    六、小组成员名单以及在线协作的图片

    (1)小组成员名单及分工

    第25组

    学号 姓名 分工
    021700201 蔡峰 实际操作和博客撰写
    171709030 吴珂雨 实际操作和博客撰写
    111700233 郑木平 实验步骤整理和提供代码及测试图片

    (2)分工协作

    采用多次语音电话或者屏幕分分享的方式共同探讨解决问题

    实际操作

    (3)小结

      太太太太感谢可爱的晓楠了,分享了OpenCV的两个zip包给我们并且给了我们几个很有用的建议(这个都写在博客里啦),完美的避开了重做之前我遇到的几个大坑。但是还有更多大坑等着我们..做第一部分的时候我觉得我们简直是奇葩中的战斗机,遇到了很多匪夷所思的问题,无法下载和解压OpenCV的两个zip包,用了python3下载虚拟机,cmake结束后没有显示有python3,python3.7的文件夹中也没有site-packages这个文件夹,import cv2又显示版本不匹配等等。感觉就我们遇到了这些奇怪的问题,有的问题甚至不能够被解决,只能换个方式。虽然最后使用python2.7版本安装虚拟机,也使用了比较低版本的numpy,最后好歹是成功了,但我还是很想知道为什么会有这些奇怪的问题。
      团队协作大概耗费了3天的时间,确实遇到了很多很多问题,也寻找了很多解决方法,进行了各种尝试,有时候确实没办法解决,换一种方式,就容易了许多,当然我们也有换了好几种方式的情况。过程太艰辛啦,总之最后是做完了,成就感满满。
      这次实践学会了使用opencv和python控制树莓派的摄像头,利用树莓派的摄像头实现人脸识别,部署opencv的docker容器,并在opencv的docker容器中运行示例代码,希望下一次的实践能够碰到的问题能够友善一些。

  • 相关阅读:
    左偏树
    output html
    jsp web.xml
    mysql link db
    beamline
    jsp embend java into html / mix scriptlets and HTML
    StringTokenizer
    TreeSet
    centOS 显示中文
    request and response
  • 原文地址:https://www.cnblogs.com/cathyccathy/p/13060377.html
Copyright © 2020-2023  润新知