• MySQL · 性能优化 · MySQL常见SQL错误用法(转自-阿里云云栖社区)


    作者:阿里云云栖社区
    链接:https://zhuanlan.zhihu.com/p/26043916
    来源:知乎
    著作权归作者所有,转载请联系作者获得授权。

    前言

    MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

    常见SQL错误用法

    1. LIMIT 语句

    分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

    SELECT * 
    FROM   operation 
    WHERE  type = 'SQLStats' 
           AND name = 'SlowLog' 
    ORDER  BY create_time 
    LIMIT  1000, 10; 
    

    好吧,可能90%以上的DBA解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

    要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL重新设计如下:

    SELECT   * 
    FROM     operation 
    WHERE    type = 'SQLStats' 
    AND      name = 'SlowLog' 
    AND      create_time > '2017-03-16 14:00:00' 
    ORDER BY create_time limit 10;
    

    在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

    2. 隐式转换

    SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

    mysql> explain extended SELECT * 
         > FROM   my_balance b 
         > WHERE  b.bpn = 14000000123 
         >       AND b.isverified IS NULL ;
    mysql> show warnings;
    | Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
    

    其中字段bpn的定义为varchar(20),MySQL的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

    上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

    3. 关联更新、删除

    虽然MySQL5.6引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成JOIN。

    比如下面UPDATE语句,MySQL实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

    UPDATE operation o 
    SET    status = 'applying' 
    WHERE  o.id IN (SELECT id 
                    FROM   (SELECT o.id, 
                                   o.status 
                            FROM   operation o 
                            WHERE  o.group = 123 
                                   AND o.status NOT IN ( 'done' ) 
                            ORDER  BY o.parent, 
                                      o.id 
                            LIMIT  1) t); 
    

    执行计划:

    +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
    | id | select_type        | table | type  | possible_keys | key     | key_len | ref   | rows | Extra                                               |
    +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
    | 1  | PRIMARY            | o     | index |               | PRIMARY | 8       |       | 24   | Using where; Using temporary                        |
    | 2  | DEPENDENT SUBQUERY |       |       |               |         |         |       |      | Impossible WHERE noticed after reading const tables |
    | 3  | DERIVED            | o     | ref   | idx_2,idx_5   | idx_5   | 8       | const | 1    | Using where; Using filesort                         |
    +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
    

    重写为JOIN之后,子查询的选择模式从DEPENDENT SUBQUERY变成DERIVED,执行速度大大加快,从7秒降低到2毫秒。

    UPDATE operation o 
           JOIN  (SELECT o.id, 
                                o.status 
                         FROM   operation o 
                         WHERE  o.group = 123 
                                AND o.status NOT IN ( 'done' ) 
                         ORDER  BY o.parent, 
                                   o.id 
                         LIMIT  1) t
             ON o.id = t.id 
    SET    status = 'applying' 
    

    执行计划简化为:

    +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
    | id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                                               |
    +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
    | 1  | PRIMARY     |       |      |               |       |         |       |      | Impossible WHERE noticed after reading const tables |
    | 2  | DERIVED     | o     | ref  | idx_2,idx_5   | idx_5 | 8       | const | 1    | Using where; Using filesort                         |
    +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
    

    4. 混合排序

    MySQL不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

    SELECT * 
    FROM   my_order o 
           INNER JOIN my_appraise a ON a.orderid = o.id 
    ORDER  BY a.is_reply ASC, 
              a.appraise_time DESC 
    LIMIT  0, 20 
    

    执行计划显示为全表扫描:

    +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
    | id | select_type | table | type   | possible_keys     | key     | key_len | ref      | rows    | Extra    
    +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
    |  1 | SIMPLE      | a     | ALL    | idx_orderid | NULL    | NULL    | NULL    | 1967647 | Using filesort |
    |  1 | SIMPLE      | o     | eq_ref | PRIMARY     | PRIMARY | 122     | a.orderid |       1 | NULL           |
    +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+
    

    由于is_reply只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

    SELECT * 
    FROM   ((SELECT *
             FROM   my_order o 
                    INNER JOIN my_appraise a 
                            ON a.orderid = o.id 
                               AND is_reply = 0 
             ORDER  BY appraise_time DESC 
             LIMIT  0, 20) 
            UNION ALL 
            (SELECT *
             FROM   my_order o 
                    INNER JOIN my_appraise a 
                            ON a.orderid = o.id 
                               AND is_reply = 1 
             ORDER  BY appraise_time DESC 
             LIMIT  0, 20)) t 
    ORDER  BY  is_reply ASC, 
              appraisetime DESC 
    LIMIT  20; 
    

    5. EXISTS语句

    MySQL对待EXISTS子句时,仍然采用嵌套子查询的执行方式。如下面的SQL语句:

    SELECT *
    FROM   my_neighbor n 
           LEFT JOIN my_neighbor_apply sra 
                  ON n.id = sra.neighbor_id 
                     AND sra.user_id = 'xxx' 
    WHERE  n.topic_status < 4 
           AND EXISTS(SELECT 1 
                      FROM   message_info m 
                      WHERE  n.id = m.neighbor_id 
                             AND m.inuser = 'xxx') 
           AND n.topic_type <> 5 
    

    执行计划为:

    +----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
    | id | select_type        | table | type | possible_keys     | key   | key_len | ref   | rows    | Extra   |
    +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
    |  1 | PRIMARY            | n     | ALL  |  | NULL     | NULL    | NULL  | 1086041 | Using where                   |
    |  1 | PRIMARY            | sra   | ref  |  | idx_user_id | 123     | const |       1 | Using where          |
    |  2 | DEPENDENT SUBQUERY | m     | ref  |  | idx_message_info   | 122     | const |       1 | Using index condition; Using where |
    +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
    

    去掉exists更改为join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

    SELECT *
    FROM   my_neighbor n 
           INNER JOIN message_info m 
                   ON n.id = m.neighbor_id 
                      AND m.inuser = 'xxx' 
           LEFT JOIN my_neighbor_apply sra 
                  ON n.id = sra.neighbor_id 
                     AND sra.user_id = 'xxx' 
    WHERE  n.topic_status < 4 
           AND n.topic_type <> 5 
    

    新的执行计划:

    +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
    | id | select_type | table | type   | possible_keys     | key       | key_len | ref   | rows | Extra                 |
    +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
    |  1 | SIMPLE      | m     | ref    | | idx_message_info   | 122     | const    |    1 | Using index condition |
    |  1 | SIMPLE      | n     | eq_ref | | PRIMARY   | 122     | ighbor_id |    1 | Using where      |
    |  1 | SIMPLE      | sra   | ref    | | idx_user_id | 123     | const     |    1 | Using where           |
    +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
    

    6. 条件下推

    外部查询条件不能够下推到复杂的视图或子查询的情况有:

    1. 聚合子查询;
    2. 含有LIMIT的子查询;
    3. UNION 或UNION ALL子查询;
    4. 输出字段中的子查询;

    如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

    SELECT * 
    FROM   (SELECT target, 
                   Count(*) 
            FROM   operation 
            GROUP  BY target) t 
    WHERE  target = 'rm-xxxx' 
    
    +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
    | id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra       |
    +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
    |  1 | PRIMARY     | <derived2> | ref   | <auto_key0>   | <auto_key0> | 514     | const |    2 | Using where |
    |  2 | DERIVED     | operation  | index | idx_4         | idx_4       | 519     | NULL  |   20 | Using index |
    +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
    

    确定从语义上查询条件可以直接下推后,重写如下:

    SELECT target, 
           Count(*) 
    FROM   operation 
    WHERE  target = 'rm-xxxx' 
    GROUP  BY target
    

    执行计划变为:

    +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
    | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
    +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
    | 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
    +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
    

    关于MySQL外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表

    7. 提前缩小范围

    先上初始SQL语句:

    SELECT * 
    FROM   my_order o 
           LEFT JOIN my_userinfo u 
                  ON o.uid = u.uid
           LEFT JOIN my_productinfo p 
                  ON o.pid = p.pid 
    WHERE  ( o.display = 0 ) 
           AND ( o.ostaus = 1 ) 
    ORDER  BY o.selltime DESC 
    LIMIT  0, 15 
    

    该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

    +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
    | id | select_type | table | type   | possible_keys | key     | key_len | ref             | rows   | Extra                                              |
    +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
    |  1 | SIMPLE      | o     | ALL    | NULL          | NULL    | NULL    | NULL            | 909119 | Using where; Using temporary; Using filesort       |
    |  1 | SIMPLE      | u     | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
    |  1 | SIMPLE      | p     | ALL    | PRIMARY       | NULL    | NULL    | NULL            |      6 | Using where; Using join buffer (Block Nested Loop) |
    +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
    

    由于最后WHERE条件以及排序均针对最左主表,因此可以先对my_order排序提前缩小数据量再做左连接。SQL重写后如下,执行时间缩小为1毫秒左右。

    SELECT * 
    FROM (
    SELECT * 
    FROM   my_order o 
    WHERE  ( o.display = 0 ) 
           AND ( o.ostaus = 1 ) 
    ORDER  BY o.selltime DESC 
    LIMIT  0, 15
    ) o 
         LEFT JOIN my_userinfo u 
                  ON o.uid = u.uid 
         LEFT JOIN my_productinfo p 
                  ON o.pid = p.pid 
    ORDER BY  o.selltime DESC
    limit 0, 15
    

    再检查执行计划:子查询物化后(select_type=DERIVED)参与JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及LIMIT 子句后,实际执行时间变得很小。

    +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
    | id | select_type | table      | type   | possible_keys | key     | key_len | ref   | rows   | Extra                                              |
    +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
    |  1 | PRIMARY     | <derived2> | ALL    | NULL          | NULL    | NULL    | NULL  |     15 | Using temporary; Using filesort                    |
    |  1 | PRIMARY     | u          | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
    |  1 | PRIMARY     | p          | ALL    | PRIMARY       | NULL    | NULL    | NULL  |      6 | Using where; Using join buffer (Block Nested Loop) |
    |  2 | DERIVED     | o          | index  | NULL          | idx_1   | 5       | NULL  | 909112 | Using where                                        |
    +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
    

    8. 中间结果集下推

    再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

    SELECT    a.*, 
              c.allocated 
    FROM      ( 
                  SELECT   resourceid 
                  FROM     my_distribute d 
                       WHERE    isdelete = 0 
                       AND      cusmanagercode = '1234567' 
                       ORDER BY salecode limit 20) a 
    LEFT JOIN 
              ( 
                  SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
                  FROM     my_resources 
                       GROUP BY resourcesid) c 
    ON        a.resourceid = c.resourcesid
    

    那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

    其实对于子查询 c,左连接最后结果集只关心能和主表resourceid能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

    SELECT    a.*, 
              c.allocated 
    FROM      ( 
                       SELECT   resourceid 
                       FROM     my_distribute d 
                       WHERE    isdelete = 0 
                       AND      cusmanagercode = '1234567' 
                       ORDER BY salecode limit 20) a 
    LEFT JOIN 
              ( 
                       SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
                       FROM     my_resources r, 
                                ( 
                                         SELECT   resourceid 
                                         FROM     my_distribute d 
                                         WHERE    isdelete = 0 
                                         AND      cusmanagercode = '1234567' 
                                         ORDER BY salecode limit 20) a 
                       WHERE    r.resourcesid = a.resourcesid 
                       GROUP BY resourcesid) c 
    ON        a.resourceid = c.resourcesid
    

    但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用WITH语句再次重写:

    WITH a AS 
    ( 
             SELECT   resourceid 
             FROM     my_distribute d 
             WHERE    isdelete = 0 
             AND      cusmanagercode = '1234567' 
             ORDER BY salecode limit 20)
    SELECT    a.*, 
              c.allocated 
    FROM      a 
    LEFT JOIN 
              ( 
                       SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
                       FROM     my_resources r, 
                                a 
                       WHERE    r.resourcesid = a.resourcesid 
                       GROUP BY resourcesid) c 
    ON        a.resourceid = c.resourcesid
    

    AliSQL即将推出WITH语法,敬请期待。

    总结

    1. 数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
    2. 程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
    3. 编写复杂SQL语句要养成使用WITH语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 ^^。
    4. 使用云上数据库遇到难点(不局限于SQL问题),随时寻求阿里云原厂专家服务的帮助。
  • 相关阅读:
    大学随笔
    TMS320C54X系列DSP上FFT运算的实现(转)
    python第一天学习笔记以及心得
    Struts2学习笔记
    C#实现eval 进行四则运算(有码)
    sql 将字符串转换为表
    XML
    图形用户界面
    java io
    java集合
  • 原文地址:https://www.cnblogs.com/cat520/p/9327964.html
Copyright © 2020-2023  润新知