-
Project Report: A Dog Breed Classifier
A Dog Breed Classifier
Setting
Model
Implementation
- normalization
- the mean pixel must be subtracted from every pixel in each image
- keras.applications.resnet50
- ResNet50
- preprocess_input (source)
- input: a tensor
- return: Preprocessed tensor
- numpy.argmax
- By taking the argmax of the predicted probability vector, we obtain an integer corresponding to the model's predicted object class, which we can identify with an object category through the use of the dictionary.
- keras.layers
- Conv2D
- keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)
- When using this layer as the first layer in a model, provide the keyword argument input_shape (tuple of integers, does not include the sample axis), e.g. input_shape=(128, 128, 3) for 128x128 RGB pictures in data_format="channels_last".
- MaxPooling2D
- GlobalAveragePooling2D
-
相关阅读:
斯坦福机器学习实现与分析之二(线性回归)
理解Kalman滤波的使用
浅谈程序优化
2014年,我学到了什么
运动目标跟踪中kalman滤波器的使用
图像水波纹特效原理分析和实现
Redis与memached的区别
Freemarker讲解
Java基础知识总结
Java中GC的工作原理
-
原文地址:https://www.cnblogs.com/casperwin/p/7727624.html
Copyright © 2020-2023
润新知