Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
分析:题意为在一个mxn矩阵中查找目标值。可以先通过二分法确定目标值target可能出现的行,然后再用一次二分法确定目标值target在行中的可能位置。
时间复杂度为O(logn+logm)
code如下:
class Solution { public: bool searchMatrix(vector<vector<int>>& matrix, int target) { int left=0; int right=matrix.size()-1; if(left != right){ while(left <= right){ int mid=left + (right-left)/2; if(matrix[mid][0]<target){ left=mid+1; } else if(matrix[mid][0]>target){ right=mid-1; } else { return true; } } } if(right==-1){ return false; } else{ int row=right; int left=0; int right=matrix[row].size()-1; while(left<=right){ int mid=left + (right-left)/2; if(matrix[row][mid]<target){ left=mid+1; } else if(matrix[row][mid]>target){ right=mid-1; } else { return true; } } return false; } } };
其他思路:
从左下角元素开始遍历,每次遍历中若与目标值target相等则返回true;若小于则列向右移动;若大于则行向下移动。时间复杂度O(logn+logm)
code如下:
class Solution { public: bool searchMatrix(vector<vector<int>>& matrix, int target) { int i=matrix.size()-1; int j=0; int m=matrix.size(); int n=matrix[0].size(); while(i>=0 && j<n){ if(matrix[i][j] > target){ i--; } else if(matrix[i][j] == target){ return true; } else{ j++; } } return false; } };