• 目标检测训练库——Detectron2 vs MMDetection


    前言

    目前,我们熟知的深度学习训练库(不同学习框架如TensorFlow,Pyorch,MXNet,Keras,Caffe等等)有很多,不同的群体有着不同的偏好。今天主要介绍的是两个Pyorch-based的training libraries,他们就是Detection2和MMDetection。

    如果说TensorFlow的设计是“Make it complicated”,Keras的设计是“Make it complicated and hide it”,那么PyTorch的设计则真正做到了“Keep it simple,stupid”。笔者深以为然。  

    参照:Overview and Comparison of Neural Network Training Libraries

     

    Detectron2

    Detectron2 是大名鼎鼎的Facebook AI Research开发的下一代算法库,提供最先进的检测和分割算法。它是Detectron和maskrcnn-benchmark的继承者。它支持Facebook中的许多计算机视觉研究项目和生产应用。

           Fig. Instance prediction using pre-trained Detectron2 model

    Pros:

    • It has been designed to be modular, flexible, and extensible for efficient training on single or multiple GPUs. 
    • The Detectron2—the successor of Detectron and maskrcnn-benchmark includes SOTA object detection algorithms such as DensePose, panoptic feature pyramid networks, and numerous variants of the pioneering Mask R-CNN. 
    • It is one of the tools published in the PyTorch ecosystem.

    Cons:

    • It does not offer access to all SOTA models. 
    • It is restricted to detection and segmentation and does not support other computer vision tasks such as classification. 
    • Its hard integration involving a modular yet abstract approach makes it very difficult to make changes to the deep learning model. 

     

    Mmdetection

    ‘mmdetection’ 是商汤科技(2018 COCO 目标检测挑战赛冠军)和香港中文大学开源的基于Pytorch实现的深度学习目标检测工具箱,性能强大,运算效率高,配置化编程,比较容易训练、测试。并且官方维护了一个mmdetection-to-tensorrt的库来进行工程化,这对公司实现自己的tensorrt plugin有帮助作用。

     Fig. Object detection using ‘mmdetection’ (Source: GitHub)

    Pros:

    • It provides access to SOTA object detection deep learning models such as FasterRCNN, DETR, VFNet, and others. 
    • The major features of the toolbox include modular design, support of multiple frameworks out of box, and high efficiency. 
    • The toolbox also includes scripts for visualization, model conversion, benchmarking, hyper-parameter optimization, among other related tasks.

    Cons:

    • It is restricted to supporting object detection models and some instance detection models. 
    • It does not support other computer vision problems such as classification.
  • 相关阅读:
    postman接口测试及断言
    postman使用CSV和Json文件实现批量接口测试
    php 实现抽奖代码
    判断时间是否过期
    文件上传-图片展示
    导入
    增删改查
    NDK编译Eigen
    keras下载vgg16太慢解决办法
    非极大值抑制NMS
  • 原文地址:https://www.cnblogs.com/carsonzhu/p/16317925.html
Copyright © 2020-2023  润新知