• 博客存档TensorFlow入门一 1.4编程练习


     

     

     1 import tensorflow as tf
     2 import numpy
     3 import matplotlib.pyplot as plt
     4 #from sklearn.model_selection import train_test_split
     5 rng = numpy.random
     6 
     7 # Parameters
     8 learning_rate = 0.01
     9 training_epochs = 2000
    10 display_step = 50
    11 
    12 # Training Data
    13 train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    14 train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    15 n_samples = train_X.shape[0]
    16 
    17 # tf Graph Input
    18 X = tf.placeholder("float")
    19 Y = tf.placeholder("float")
    20 
    21 # Create Model
    22 
    23 # Set model weights
    24 W = tf.Variable(rng.randn(), name="weight")
    25 b = tf.Variable(rng.randn(), name="bias")
    26 
    27 # Construct a linear model
    28 activation = tf.add(tf.mul(X, W), b)
    29 
    30 # Minimize the squared errors
    31 cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples)   #L2 loss
    32 
    33  #reduce_sum:把里面的平方求和
    34  # pow(x,y):这个是表示x的y次幂。
    35 
    36 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
    37 
    38 #Gradient descent
    39 
    40 # Initializing the variables
    41 init = tf.initialize_all_variables()
    42 
    43 # Launch the graph
    44 with tf.Session() as sess:
    45     sess.run(init)
    46 
    47     # Fit all training data
    48     for epoch in range(training_epochs):
    49         for (x, y) in zip(train_X, train_Y):
    50             sess.run(optimizer, feed_dict={X: x, Y: y})
    51               #zip:对应的元素打包成一个个元组
    52         #Display logs per epoch step
    53         if epoch % display_step == 0:
    54             print("Epoch:", '%04d' % (epoch+1), "cost=", 
    55                 "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), 
    56                 "W=", sess.run(W), "b=", sess.run(b))
    57 
    58     print("Optimization Finished!")
    59     print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), 
    60           "W=", sess.run(W), "b=", sess.run(b))
    61 
    62     #Graphic display
    63     plt.plot(train_X, train_Y, 'ro', label='Original data')
    64     plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    65     plt.legend()
    66     plt.show()
  • 相关阅读:
    jQuery Ajax 实例 全解析
    用Javascript评估用户输入密码的强度
    常用网址
    常用的107条Javascript
    根据键盘操作表格
    HTML5吧
    css3动画简介以及动画库animate.css的使用
    jquery插件下载地址
    CEO、COO、CFO、CTO
    springboot与shiro配置
  • 原文地址:https://www.cnblogs.com/captain-dl/p/9270926.html
Copyright © 2020-2023  润新知