1 import tensorflow as tf 2 import numpy 3 import matplotlib.pyplot as plt 4 #from sklearn.model_selection import train_test_split 5 rng = numpy.random 6 7 # Parameters 8 learning_rate = 0.01 9 training_epochs = 2000 10 display_step = 50 11 12 # Training Data 13 train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) 14 train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) 15 n_samples = train_X.shape[0] 16 17 # tf Graph Input 18 X = tf.placeholder("float") 19 Y = tf.placeholder("float") 20 21 # Create Model 22 23 # Set model weights 24 W = tf.Variable(rng.randn(), name="weight") 25 b = tf.Variable(rng.randn(), name="bias") 26 27 # Construct a linear model 28 activation = tf.add(tf.mul(X, W), b) 29 30 # Minimize the squared errors 31 cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss 32 33 #reduce_sum:把里面的平方求和 34 # pow(x,y):这个是表示x的y次幂。 35 36 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) 37 38 #Gradient descent 39 40 # Initializing the variables 41 init = tf.initialize_all_variables() 42 43 # Launch the graph 44 with tf.Session() as sess: 45 sess.run(init) 46 47 # Fit all training data 48 for epoch in range(training_epochs): 49 for (x, y) in zip(train_X, train_Y): 50 sess.run(optimizer, feed_dict={X: x, Y: y}) 51 #zip:对应的元素打包成一个个元组 52 #Display logs per epoch step 53 if epoch % display_step == 0: 54 print("Epoch:", '%04d' % (epoch+1), "cost=", 55 "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), 56 "W=", sess.run(W), "b=", sess.run(b)) 57 58 print("Optimization Finished!") 59 print("cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), 60 "W=", sess.run(W), "b=", sess.run(b)) 61 62 #Graphic display 63 plt.plot(train_X, train_Y, 'ro', label='Original data') 64 plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') 65 plt.legend() 66 plt.show()