编辑距离概念描述:
编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。
例如将kitten一字转成sitting:
- sitten (k→s)
- sittin (e→i)
- sitting (→g)
俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。
问题:找出字符串的编辑距离,即把一个字符串s1最少经过多少步操作变成编程字符串s2,操作有三种,添加一个字符,删除一个字符,修改一个字符
解析:
首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。
显然可以有如下动态规划公式:
- if i == 0 且 j == 0,edit(i, j) = 0
- if i == 0 且 j > 0,edit(i, j) = j
- if i > 0 且j == 0,edit(i, j) = i
- if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
举例:edit(4, 2)== min{ edit(4-1, 2) + 1, edit(4, 2-1) + 1, edit(4-1, 2-1) + f(4, 2) }
字符"abcd"到字符"ac"的编辑距离 == 字符"abcd"到字符"a"的编辑距离+1, 字符"abc"到字符"ac"的编辑距离+1,字符"abc"到字符"a"的编辑距离+0或者1 (如果后面相等就为0,不相等为1)。
代码:
function editDistance(s1,s2) {
//s1[i]表示第一个字符的第i个字符
var len1=s1.length,len2=s2.length;
var d=[];
var i,j;
/*初始化二维数组,以及定义
if i == 0 且 j == 0,edit(i, j) = 0
if i == 0 且 j > 0,edit(i, j) = j
if i > 0 且j == 0,edit(i, j) = i
*/
for(i = 0;i <= len1;i++){
d[i]=[];
d[i][0] = i;
}
for(j = 0;j <= len2;j++){
d[0][j] = j;
}
for(i = 1;i <= len1;i++){
for(j = 1;j <= len2;j++) {
var cost = s1[i-1] === s2[j-1] ? 0 : 1;
var deletion = d[i-1][j] + 1; //删除动作
var insertion = d[i][j-1] + 1; //增加动作
var substitution = d[i-1][j-1] + cost; //替换字符,如果相同cost=0;不同cost=1
d[i][j] = Math.min(deletion,insertion,substitution);
}
}
return d;
}
function getchunkExec(s1,s2) {
var chunkExec=[];
var pre;
//生成增量指令 r:替换,a:增加,d删除
function edit(d,i,j) {
if(i===0&&j===0)return;
if(i>0&&j>0&&d[i][j]>d[i-1][j-1]) {
if(pre&&pre[0]==='r'){
pre[1]=i-1;
pre[2]=s2[j-1]+pre[2]
}else{
pre=['r',i-1,s2[j-1]]
chunkExec.push(pre);
}
edit(d, i - 1, j - 1)
}else if(j>0&&d[i][j]>d[i][j-1]){
if(pre&&pre[0]==='a'){
pre[1]=s2[j-1]+pre[1]
}else{
pre=['a',s2[j-1]]
chunkExec.push(pre);
}
edit(d,i,j-1)
}else if(i>0&&d[i][j]>d[i-1][j]){
if(pre&&pre[0]==='d'){
pre[1]=i-1;
}else{
pre=['d',i-1]
chunkExec.push(pre);
}
edit(d,i-1,j)
}else if(d[i][j]===d[i-1][j-1]) {
if(pre&&pre[0]==='e'){
pre[1]=i-1;
}else{
pre=['e',i-1]
chunkExec.push(pre);
}
edit(d, i - 1, j - 1)
}
}
var rect=editDistance(s1,s2);
edit(rect,s1.length,s2.length)
return chunkExec;
}
//s1 chunk更新
function chunkUpdate(s1,chunkExec){
var arr=[]
chunkExec.forEach(function (item) {
if(item[0]==='r'){
s1=s1.slice(0,item[1])
arr.unshift(item[2])
}else if(item[0]==='a'){
arr.unshift(item[1])
}else if(item[0]==='d'){
s1=s1.slice(0,item[1])
}else if(item[0]==='e'){
arr.unshift(s1.slice(item[1]))
s1=s1.slice(0,item[1])
}
})
return arr.join('');
}
//定义两个字符
var s1="adsddsdsd",s2="abcd";
//生成增量包
var chunkExec=getchunkExec(s1,s2)
//解析增量包
var ns1=chunkUpdate(s1,chunkExec)
console.log(chunkExec);//增量包
console.log(s1,'=>',ns1,ns1===s2);//>abcd true
[ [ 'd', 4 ], [ 'e', 3 ], [ 'r', 1, 'bc' ], [ 'e', 0 ] ]
adsddsdsd => abcd true