一 面向对象的程序设计的由来
面向对象设计的由来见概述:http://www.cnblogs.com/linhaifeng/articles/6428835.html
二 什么是面向对象的程序设计及为什么要有它
面向过程的程序设计:核心是过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种机械式的思维方式。
优点是:复杂度的问题流程化,进而简单化(一个复杂的问题,分成一个个小的步骤去实现,实现小的步骤将会非常简单)
缺点是:一套流水线或者流程就是用来解决一个问题,生产汽水的流水线无法生产汽车,即便是能,也得是大改,改一个组件,牵一发而动全身。
应用场景:一旦完成基本很少改变的场景,著名的例子有Linux內核,git,以及Apache HTTP Server等。
面向对象的程序设计:核心是对象二字,(要理解对象为何物,必须把自己当成上帝,上帝眼里世间存在的万物皆为对象,不存在的也可以创造出来。面向对象的程序设计好比如来设计西游记,如来要解决的问题是把经书传给东土大唐,如来想了想解决这个问题需要四个人:唐僧,沙和尚,猪八戒,孙悟空,每个人都有各自的特征和技能(这就是对象的概念,特征和技能分别对应对象的数据属性和方法属性),然而这并不好玩,于是如来又安排了一群妖魔鬼怪,为了防止师徒四人在取经路上被搞死,又安排了一群神仙保驾护航,这些都是对象。然后取经开始,师徒四人与妖魔鬼怪神仙交互着直到最后取得真经。如来根本不会管师徒四人按照什么流程去取),对象是特征与技能的结合体,基于面向对象设计程序就好比在创造一个世界,你就是这个世界的上帝,存在的皆为对象,不存在的也可以创造出来,与面向过程机械式的思维方式形成鲜明对比,面向对象更加注重对现实世界的模拟,是一种“上帝式”的思维方式。
优点是:解决了程序的扩展性。对某一个对象单独修改,会立刻反映到整个体系中,如对游戏中一个人物参数的特征和技能修改都很容易。
缺点:
1. 编程的复杂度远高于面向过程,不了解面向对象而立即上手基于它设计程序,极容易出现过度设计的问题。一些扩展性要求低的场景使用面向对象会徒增编程难度,比如管理linux系统的shell脚本就不适合用面向对象去设计,面向过程反而更加适合。
2. 无法向面向过程的程序设计流水线式的可以很精准的预测问题的处理流程与结果,面向对象的程序一旦开始就由对象之间的交互解决问题,即便是上帝也无法准确地预测最终结果。于是我们经常看到对战类游戏,新增一个游戏人物,在对战的过程中极容易出现阴霸的技能,一刀砍死3个人,这种情况是无法准确预知的,只有对象之间交互才能准确地知道最终的结果。
应用场景:需求经常变化的软件,一般需求的变化都集中在用户层,互联网应用,企业内部软件,游戏等都是面向对象的程序设计大显身手的好地方
面向对象的程序设计并不是全部。对于一个软件质量来说,面向对象的程序设计只是用来解决扩展性。
选读:程序设计思想发展史:http://www.cnblogs.com/linhaifeng/articles/6428835.html
三 类与对象
类即类别、种类,是面向对象设计最重要的概念,对象是特征与技能的结合体,而类则是一系列对象相似的特征与技能的结合体
那么问题来了,先有的一个个具体存在的对象(比如一个具体存在的人),还是先有的人类这个概念,这个问题需要分两种情况去看
在现实世界中:先有对象,再有类
世界上肯定是先出现各种各样的实际存在的物体,然后随着人类文明的发展,人类站在不同的角度总结出了不同的种类,如人类、动物类、植物类等概念
也就说,对象是具体的存在,而类仅仅只是一个概念,并不真实存在
在程序中:务必保证先定义类,后产生对象
这与函数的使用是类似的,先定义函数,后调用函数,类也是一样的,在程序中需要先定义类,后调用类
不一样的是,调用函数会执行函数体代码返回的是函数体执行的结果,而调用类会产生对象,返回的是对象
按照上述步骤,我们来定义一个类(我们站在老男孩学校的角度去看,在座的各位都是学生)
#在现实世界中,站在老男孩学校的角度:先有对象,再有类 对象1:李坦克 特征: 学校=oldboy 姓名=李坦克 性别=男 年龄=18 技能: 学习 吃饭 睡觉 对象2:王大炮 特征: 学校=oldboy 姓名=王大炮 性别=女 年龄=38 技能: 学习 吃饭 睡觉 对象3:牛榴弹 特征: 学校=oldboy 姓名=牛榴弹 性别=男 年龄=78 技能: 学习 吃饭 睡觉 现实中的老男孩学生类 相似的特征: 学校=oldboy 相似的技能: 学习 吃饭 睡觉
#在程序中,务必保证:先定义(类),后使用(产生对象) PS: 1. 在程序中特征用变量标识,技能用函数标识 2. 因而类中最常见的无非是:变量和函数的定义 #程序中的类 class OldboyStudent: school='oldboy' def learn(self): print('is learning') def eat(self): print('is eating') def sleep(self): print('is sleeping') #注意: 1.类中可以有任意python代码,这些代码在类定义阶段便会执行 2.因而会产生新的名称空间,用来存放类的变量名与函数名,可以通过OldboyStudent.__dict__查看 3.对于经典类来说我们可以通过该字典操作类名称空间的名字(新式类有限制),但python为我们提供专门的.语法 4.点是访问属性的语法,类中定义的名字,都是类的属性 #程序中类的用法 .:专门用来访问属性,本质操作的就是__dict__ OldboyStudent.school #等于经典类的操作OldboyStudent.__dict__['school'] OldboyStudent.school='Oldboy' #等于经典类的操作OldboyStudent.__dict__['school']='Oldboy' OldboyStudent.x=1 #等于经典类的操作OldboyStudent.__dict__['x']=1 del OldboyStudent.x #等于经典类的操作OldboyStudent.__dict__.pop('x') #程序中的对象 #调用类,或称为实例化,得到对象 s1=OldboyStudent() s2=OldboyStudent() s3=OldboyStudent() #如此,s1、s2、s3都一样了,而这三者除了相似的属性之外还各种不同的属性,这就用到了__init__ #注意:该方法是在对象产生之后才会执行,只用来为对象进行初始化操作,可以有任意代码,但一定不能有返回值 class OldboyStudent: ...... def __init__(self,name,age,sex): self.name=name self.age=age self.sex=sex ...... s1=OldboyStudent('李坦克','男',18) #先调用类产生空对象s1,然后调用OldboyStudent.__init__(s1,'李坦克','男',18) s2=OldboyStudent('王大炮','女',38) s3=OldboyStudent('牛榴弹','男',78) #程序中对象的用法 #执行__init__,s1.name='牛榴弹',很明显也会产生对象的名称空间 s2.__dict__ {'name': '王大炮', 'age': '女', 'sex': 38} s2.name #s2.__dict__['name'] s2.name='王三炮' #s2.__dict__['name']='王三炮' s2.course='python' #s2.__dict__['course']='python' del s2.course #s2.__dict__.pop('course') 在程序中:先定义类,后产生对象
PS:
1. 站的角度不同,定义出的类是截然不同的,详见面向对象实战之需求分析
2. 现实中的类并不完全等于程序中的类,比如现实中的公司类,在程序中有时需要拆分成部门类,业务类......
3. 有时为了编程需求,程序中也可能会定义现实中不存在的类,比如策略类,现实中并不存在,但是在程序中却是一个很常见的类
#python为类内置的特殊属性 类名.__name__# 类的名字(字符串) 类名.__doc__# 类的文档字符串 类名.__base__# 类的第一个父类(在讲继承时会讲) 类名.__bases__# 类所有父类构成的元组(在讲继承时会讲) 类名.__dict__# 类的字典属性 类名.__module__# 类定义所在的模块 类名.__class__# 实例对应的类(仅新式类中)
!!!补充说明:从代码级别看面向对象 !!!
#1、在没有学习类这个概念时,数据与功能是分离的 def exc1(host,port,db,charset): conn=connect(host,port,db,charset) conn.execute(sql) return xxx def exc2(host,port,db,charset,proc_name) conn=connect(host,port,db,charset) conn.call_proc(sql) return xxx #每次调用都需要重复传入一堆参数 exc1('127.0.0.1',3306,'db1','utf8','select * from tb1;') exc2('127.0.0.1',3306,'db1','utf8','存储过程的名字') #2、我们能想到的解决方法是,把这些变量都定义成全局变量 HOST=‘127.0.0.1’ PORT=3306 DB=‘db1’ CHARSET=‘utf8’ def exc1(host,port,db,charset): conn=connect(host,port,db,charset) conn.execute(sql) return xxx def exc2(host,port,db,charset,proc_name) conn=connect(host,port,db,charset) conn.call_proc(sql) return xxx exc1(HOST,PORT,DB,CHARSET,'select * from tb1;') exc2(HOST,PORT,DB,CHARSET,'存储过程的名字') #3、但是2的解决方法也是有问题的,按照2的思路,我们将会定义一大堆全局变量,这些全局变量并没有做任何区分,即能够被所有功能使用,然而事实上只有HOST,PORT,DB,CHARSET是给exc1和exc2这两个功能用的。言外之意:我们必须找出一种能够将数据与操作数据的方法组合到一起的解决方法,这就是我们说的类了 class MySQLHandler: def __init__(self,host,port,db,charset='utf8'): self.host=host self.port=port self.db=db self.charset=charset def exc1(self,sql): conn=connect(self.host,self.port,self.db,self.charset) res=conn.execute(sql) return res def exc2(self,sql): conn=connect(self.host,self.port,self.db,self.charset) res=conn.call_proc(sql) return res obj=MySQLHandler('127.0.0.1',3306,'db1') obj.exc1('select * from tb1;') obj.exc2('存储过程的名字') #改进 class MySQLHandler: def __init__(self,host,port,db,charset='utf8'): self.host=host self.port=port self.db=db self.charset=charset self.conn=connect(self.host,self.port,self.db,self.charset) def exc1(self,sql): return self.conn.execute(sql) def exc2(self,sql): return self.conn.call_proc(sql) obj=MySQLHandler('127.0.0.1',3306,'db1') obj.exc1('select * from tb1;') obj.exc2('存储过程的名字')
四 属性查找
类有两种属性:数据属性和函数属性
1. 类的数据属性是所有对象共享的
2. 类的函数属性是绑定给对象用的
#类的数据属性是所有对象共享的,id都一样 print(id(OldboyStudent.school)) print(id(s1.school)) print(id(s2.school)) print(id(s3.school)) ''' 4377347328 4377347328 ''' #类的函数属性是绑定给对象使用的,obj.method称为绑定方法,内存地址都不一样 #ps:id是python的实现机制,并不能真实反映内存地址,如果有内存地址,还是以内存地址为准 print(OldboyStudent.learn) print(s1.learn) print(s2.learn) print(s3.learn) ''' <function OldboyStudent.learn at 0x1021329d8> <bound method OldboyStudent.learn of <__main__.OldboyStudent object at 0x1021466d8>> <bound method OldboyStudent.learn of <__main__.OldboyStudent object at 0x102146710>> <bound method OldboyStudent.learn of <__main__.OldboyStudent object at 0x102146748>> '''
在obj.name会先从obj自己的名称空间里找name,找不到则去类中找,类也找不到就找父类...最后都找不到就抛出异常
练习:编写一个学生类,产生一堆学生对象,要求有一个计数器(属性),统计总共实例了多少个对象
五 绑定到对象的方法的特殊之处
#改写 class OldboyStudent: school='oldboy' def __init__(self,name,age,sex): self.name=name self.age=age self.sex=sex def learn(self): print('%s is learning' %self.name) #新增self.name def eat(self): print('%s is eating' %self.name) def sleep(self): print('%s is sleeping' %self.name) s1=OldboyStudent('李坦克','男',18) s2=OldboyStudent('王大炮','女',38) s3=OldboyStudent('牛榴弹','男',78)
类中定义的函数(没有被任何装饰器装饰的)是类的函数属性,类可以使用,但必须遵循函数的参数规则,有几个参数需要传几个参数
OldboyStudent.learn(s1) #李坦克 is learning OldboyStudent.learn(s2) #王大炮 is learning OldboyStudent.learn(s3) #牛榴弹 is learning
类中定义的函数(没有被任何装饰器装饰的),其实主要是给对象使用的,而且是绑定到对象的,虽然所有对象指向的都是相同的功能,但是绑定到不同的对象就是不同的绑定方法
强调:绑定到对象的方法的特殊之处在于,绑定给谁就由谁来调用,谁来调用,就会将‘谁’本身当做第一个参数传给方法,即自动传值(方法__init__也是一样的道理)
s1.learn() #等同于OldboyStudent.learn(s1) s2.learn() #等同于OldboyStudent.learn(s2) s3.learn() #等同于OldboyStudent.learn(s3)
注意:绑定到对象的方法的这种自动传值的特征,决定了在类中定义的函数都要默认写一个参数self,self可以是任意名字,但是约定俗成地写出self。
类即类型
提示:python的class术语与c++有一定区别,与 Modula-3更像。
python中一切皆为对象,且python3中类与类型是一个概念,类型就是类
#类型dict就是类dict >>> list <class 'list'> #实例化的到3个对象l1,l2,l3 >>> l1=list() >>> l2=list() >>> l3=list() #三个对象都有绑定方法append,是相同的功能,但内存地址不同 >>> l1.append <built-in method append of list object at 0x10b482b48> >>> l2.append <built-in method append of list object at 0x10b482b88> >>> l3.append <built-in method append of list object at 0x10b482bc8> #操作绑定方法l1.append(3),就是在往l1添加3,绝对不会将3添加到l2或l3 >>> l1.append(3) >>> l1 [3] >>> l2 [] >>> l3 [] #调用类list.append(l3,111)等同于l3.append(111) >>> list.append(l3,111) #l3.append(111) >>> l3 [111]
六 对象之间的交互
class Garen: #定义英雄盖伦的类,不同的玩家可以用它实例出自己英雄; camp='Demacia' #所有玩家的英雄(盖伦)的阵营都是Demacia; def __init__(self,nickname,aggressivity=58,life_value=455): #英雄的初始攻击力58...; self.nickname=nickname #为自己的盖伦起个别名; self.aggressivity=aggressivity #英雄都有自己的攻击力; self.life_value=life_value #英雄都有自己的生命值; def attack(self,enemy): #普通攻击技能,enemy是敌人; enemy.life_value-=self.aggressivity #根据自己的攻击力,攻击敌人就减掉敌人的生命值。
我们可以仿照garen类再创建一个Riven类
class Riven: camp='Noxus' #所有玩家的英雄(锐雯)的阵营都是Noxus; def __init__(self,nickname,aggressivity=54,life_value=414): #英雄的初始攻击力54; self.nickname=nickname #为自己的锐雯起个别名; self.aggressivity=aggressivity #英雄都有自己的攻击力; self.life_value=life_value #英雄都有自己的生命值; def attack(self,enemy): #普通攻击技能,enemy是敌人; enemy.life_value-=self.aggressivity #根据自己的攻击力,攻击敌人就减掉敌人的生命值。
实例出俩英雄
>>> g1=Garen('草丛伦') >>> r1=Riven('锐雯雯')
交互:锐雯雯攻击草丛伦,反之一样
>>> g1.life_value 455 >>> r1.attack(g1) >>> g1.life_value 401
>>> g1.life_value 455 >>> r1.attack(g1) >>> g1.life_value 401
补充:
garen_hero.Q()称为向garen_hero这个对象发送了一条消息,让他去执行Q这个功能,类似的有:
garen_hero.W()
garen_hero.E()
garen_hero.R()
七 练习
- 基于面向对象设计一个对战游戏
定义锐雯类:
class Riven: camp='Noxus' def __init__(self,nickname, aggressivity=54, life_value=414, money=1001, armor=3): self.nickname=nickname self.aggressivity=aggressivity self.life_value=life_value self.money=money self.armor=armor def attack(self,enemy): damage_value=self.aggressivity-enemy.armor enemy.life_value-=damage_value
定义盖文类:
class Garen: camp='Demacia' def __init__(self,nickname, aggressivity=58, life_value=455, money=100, armor=10): self.nickname=nickname self.aggressivity=aggressivity self.life_value=life_value self.money=money self.armor=armor def attack(self,enemy): damage_value=self.aggressivity-enemy.armor enemy.life_value-=damage_value
定义装备:
class BlackCleaver: def __init__(self,price=475,aggrev=9,life_value=100): self.price=price self.aggrev=aggrev self.life_value=life_value def update(self,obj): obj.money-=self.price #减钱 obj.aggressivity+=self.aggrev #加攻击 obj.life_value+=self.life_value #加生命值 def fire(self,obj): #这是该装备的主动技能,喷火,烧死对方 obj.life_value-=1000 #假设火烧的攻击力是1000
测试交互
r1=Riven('草丛伦') g1=Garen('盖文') b1=BlackCleaver() print(r1.aggressivity,r1.life_value,r1.money) #r1的攻击力,生命值,护甲 if r1.money > b1.price: r1.b1=b1 b1.update(r1) print(r1.aggressivity,r1.life_value,r1.money) #r1的攻击力,生命值,护甲 print(g1.life_value) r1.attack(g1) #普通攻击 print(g1.life_value) r1.b1.fire(g1) #用装备攻击 print(g1.life_value) #g1的生命值小于0就死了
按照这种思路一点一点的设计类和对象,最终你完全可以实现一个对战类游戏。
八 继承与派生
1. 初识继承
什么是继承
继承是一种创建新类的方式,新建的类可以继承一个或多个父类(python支持多继承),父类又可称为基类或超类,新建的类称为派生类或子类。
子类会“”遗传”父类的属性,从而解决代码重用问题(比如练习7中Garen与Riven类有很多冗余的代码)
python中类的继承分为:单继承和多继承
class ParentClass1: #定义父类 pass class ParentClass2: #定义父类 pass class SubClass1(ParentClass1): #单继承,基类是ParentClass1,派生类是SubClass pass class SubClass2(ParentClass1,ParentClass2): #python支持多继承,用逗号分隔开多个继承的类 pass
查看继承
>>> SubClass1.__bases__ #__base__只查看从左到右继承的第一个子类,__bases__则是查看所有继承的父类 (<class '__main__.ParentClass1'>,) >>> SubClass2.__bases__ (<class '__main__.ParentClass1'>, <class '__main__.ParentClass2'>)
经典类与新式类
1.只有在python2中才分新式类和经典类,python3中统一都是新式类 2.在python2中,没有显式的继承object类的类,以及该类的子类,都是经典类 3.在python2中,显式地声明继承object的类,以及该类的子类,都是新式类 3.在python3中,无论是否继承object,都默认继承object,即python3中所有类均为新式类 #关于新式类与经典类的区别,我们稍后讨论
提示:如果没有指定基类,python的类会默认继承object类,object是所有python类的基类,它提供了一些常见方法(如__str__)的实现。
>>> ParentClass1.__bases__ (<class 'object'>,) >>> ParentClass2.__bases__ (<class 'object'>,)
2. 继承与抽象(先抽象再继承)
继承描述的是子类与父类之间的关系,是一种什么是什么的关系。要找出这种关系,必须先抽象再继承
抽象即抽取类似或者说比较像的部分。
抽象分成两个层次:
1.将奥巴马和梅西这俩对象比较像的部分抽取成类;
2.将人,猪,狗这三个类比较像的部分抽取成父类。
抽象最主要的作用是划分类别(可以隔离关注点,降低复杂度)
继承:是基于抽象的结果,通过编程语言去实现它,肯定是先经历抽象这个过程,才能通过继承的方式去表达出抽象的结构。
抽象只是分析和设计的过程中,一个动作或者说一种技巧,通过抽象可以得到类
3. 继承与重用性
==========================第一部分 例如 猫可以:喵喵叫、吃、喝、拉、撒 狗可以:汪汪叫、吃、喝、拉、撒 如果我们要分别为猫和狗创建一个类,那么就需要为 猫 和 狗 实现他们所有的功能,伪代码如下: #猫和狗有大量相同的内容 class 猫: def 喵喵叫(self): print '喵喵叫' def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something class 狗: def 汪汪叫(self): print '喵喵叫' def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something ==========================第二部分 上述代码不难看出,吃、喝、拉、撒是猫和狗都具有的功能,而我们却分别的猫和狗的类中编写了两次。如果使用 继承 的思想,如下实现: 动物:吃、喝、拉、撒 猫:喵喵叫(猫继承动物的功能) 狗:汪汪叫(狗继承动物的功能) 伪代码如下: class 动物: def 吃(self): # do something def 喝(self): # do something def 拉(self): # do something def 撒(self): # do something # 在类后面括号中写入另外一个类名,表示当前类继承另外一个类 class 猫(动物): def 喵喵叫(self): print '喵喵叫' # 在类后面括号中写入另外一个类名,表示当前类继承另外一个类 class 狗(动物): def 汪汪叫(self): print '喵喵叫' ==========================第三部分 #继承的代码实现 class Animal: def eat(self): print("%s 吃 " %self.name) def drink(self): print ("%s 喝 " %self.name) def shit(self): print ("%s 拉 " %self.name) def pee(self): print ("%s 撒 " %self.name) class Cat(Animal): def __init__(self, name): self.name = name self.breed = '猫' def cry(self): print('喵喵叫') class Dog(Animal): def __init__(self, name): self.name = name self.breed='狗' def cry(self): print('汪汪叫') # ######### 执行 ######### c1 = Cat('小白家的小黑猫') c1.eat() c2 = Cat('小黑的小白猫') c2.drink() d1 = Dog('胖子家的小瘦狗') d1.eat() 使用继承来重用代码比较好的例子
在开发程序的过程中,如果我们定义了一个类A,然后又想新建立另外一个类B,但是类B的大部分内容与类A的相同时
我们不可能从头开始写一个类B,这就用到了类的继承的概念。
通过继承的方式新建类B,让B继承A,B会‘遗传’A的所有属性(数据属性和函数属性),实现代码重用
class Hero: def __init__(self,nickname,aggressivity,life_value): self.nickname=nickname self.aggressivity=aggressivity self.life_value=life_value def move_forward(self): print('%s move forward' %self.nickname) def move_backward(self): print('%s move backward' %self.nickname) def move_left(self): print('%s move forward' %self.nickname) def move_right(self): print('%s move forward' %self.nickname) def attack(self,enemy): enemy.life_value-=self.aggressivity class Garen(Hero): pass class Riven(Hero): pass g1=Garen('草丛伦',100,300) r1=Riven('锐雯雯',57,200) print(g1.life_value) r1.attack(g1) print(g1.life_value) ''' 运行结果 '''
提示:用已经有的类建立一个新的类,这样就重用了已经有的软件中的一部分设置大部分,大大生了编程工作量,这就是常说的软件重用,不仅可以重用自己的类,也可以继承别人的,比如标准库,来定制新的数据类型,这样就是大大缩短了软件开发周期,对大型软件开发来说,意义重大.
注意:像g1.life_value之类的属性引用,会先从实例中找life_value然后去类中找,然后再去父类中找...直到最顶级的父类。
重点!!!:再看属性查找
class Foo: def f1(self): print('Foo.f1') def f2(self): print('Foo.f2') self.f1() class Bar(Foo): def f1(self): print('Foo.f1') b=Bar() b.f2()
4.派生
当然子类也可以添加自己新的属性或者在自己这里重新定义这些属性(不会影响到父类),需要注意的是,一旦重新定义了自己的属性且与父类重名,那么调用新增的属性时,就以自己为准了。
class Riven(Hero): camp='Noxus' def attack(self,enemy): #在自己这里定义新的attack,不再使用父类的attack,且不会影响父类 print('from riven') def fly(self): #在自己这里定义新的 print('%s is flying' %self.nickname)
在子类中,新建的重名的函数属性,在编辑函数内功能的时候,有可能需要重用父类中重名的那个函数功能,应该是用调用普通函数的方式,即:类名.func(),此时就与调用普通函数无异了,因此即便是self参数也要为其传值
class Riven(Hero): camp='Noxus' def __init__(self,nickname,aggressivity,life_value,skin): Hero.__init__(self,nickname,aggressivity,life_value) #调用父类功能 self.skin=skin #新属性 def attack(self,enemy): #在自己这里定义新的attack,不再使用父类的attack,且不会影响父类 Hero.attack(self,enemy) #调用功能 print('from riven') def fly(self): #在自己这里定义新的 print('%s is flying' %self.nickname) r1=Riven('锐雯雯',57,200,'比基尼') r1.fly() print(r1.skin) ''' 运行结果 锐雯雯 is flying 比基尼 '''
5 组合与重用性
软件重用的重要方式除了继承之外还有另外一种方式,即:组合
组合指的是,在一个类中以另外一个类的对象作为数据属性,称为类的组合
>>> class Equip: #武器装备类 ... def fire(self): ... print('release Fire skill') ... >>> class Riven: #英雄Riven的类,一个英雄需要有装备,因而需要组合Equip类 ... camp='Noxus' ... def __init__(self,nickname): ... self.nickname=nickname ... self.equip=Equip() #用Equip类产生一个装备,赋值给实例的equip属性 ... >>> r1=Riven('锐雯雯') >>> r1.equip.fire() #可以使用组合的类产生的对象所持有的方法 release Fire skill
组合与继承都是有效地利用已有类的资源的重要方式。但是二者的概念和使用场景皆不同,
1.继承的方式
通过继承建立了派生类与基类之间的关系,它是一种'是'的关系,比如白马是马,人是动物。
当类之间有很多相同的功能,提取这些共同的功能做成基类,用继承比较好,比如老师是人,学生是人
2.组合的方式
用组合的方式建立了类与组合的类之间的关系,它是一种‘有’的关系,比如教授有生日,教授教python和linux课程,教授有学生s1、s2、s3...
class People: def __init__(self,name,age,sex): self.name=name self.age=age self.sex=sex class Course: def __init__(self,name,period,price): self.name=name self.period=period self.price=price def tell_info(self): print('<%s %s %s>' %(self.name,self.period,self.price)) class Teacher(People): def __init__(self,name,age,sex,job_title): People.__init__(self,name,age,sex) self.job_title=job_title self.course=[] self.students=[] class Student(People): def __init__(self,name,age,sex): People.__init__(self,name,age,sex) self.course=[] egon=Teacher('egon',18,'male','沙河霸道金牌讲师') s1=Student('牛榴弹',18,'female') python=Course('python','3mons',3000.0) linux=Course('python','3mons',3000.0) #为老师egon和学生s1添加课程 egon.course.append(python) egon.course.append(linux) s1.course.append(python) #为老师egon添加学生s1 egon.students.append(s1) #使用 for obj in egon.course: obj.tell_info() 例子:继承与组合
当类之间有显著不同,并且较小的类是较大的类所需要的组件时,用组合比较好
6接口与归一化设计
1.什么是接口
=================第一部分:Java 语言中的接口很好的展现了接口的含义: IAnimal.java /* * Java的Interface接口的特征: * 1)是一组功能的集合,而不是一个功能 * 2)接口的功能用于交互,所有的功能都是public,即别的对象可操作 * 3)接口只定义函数,但不涉及函数实现 * 4)这些功能是相关的,都是动物相关的功能,但光合作用就不适宜放到IAnimal里面了 */ package com.oo.demo; public interface IAnimal { public void eat(); public void run(); public void sleep(); public void speak(); } =================第二部分:Pig.java:猪”的类设计,实现了IAnnimal接口 package com.oo.demo; public class Pig implements IAnimal{ //如下每个函数都需要详细实现 public void eat(){ System.out.println("Pig like to eat grass"); } public void run(){ System.out.println("Pig run: front legs, back legs"); } public void sleep(){ System.out.println("Pig sleep 16 hours every day"); } public void speak(){ System.out.println("Pig can not speak"); } } =================第三部分:Person2.java /* *实现了IAnimal的“人”,有几点说明一下: * 1)同样都实现了IAnimal的接口,但“人”和“猪”的实现不一样,为了避免太多代码导致影响阅读,这里的代码简化成一行,但输出的内容不一样,实际项目中同一接口的同一功能点,不同的类实现完全不一样 * 2)这里同样是“人”这个类,但和前面介绍类时给的类“Person”完全不一样,这是因为同样的逻辑概念,在不同的应用场景下,具备的属性和功能是完全不一样的 */ package com.oo.demo; public class Person2 implements IAnimal { public void eat(){ System.out.println("Person like to eat meat"); } public void run(){ System.out.println("Person run: left leg, right leg"); } public void sleep(){ System.out.println("Person sleep 8 hours every dat"); } public void speak(){ System.out.println("Hellow world, I am a person"); } } =================第四部分:Tester03.java package com.oo.demo; public class Tester03 { public static void main(String[] args) { System.out.println("===This is a person==="); IAnimal person = new Person2(); person.eat(); person.run(); person.sleep(); person.speak(); System.out.println(" ===This is a pig==="); IAnimal pig = new Pig(); pig.eat(); pig.run(); pig.sleep(); pig.speak(); } } java中的interface
PS:hi boy,给我开个查询接口。。。此时的接口指的是:自己提供给使用者来调用自己功能的方式方法入口
2. 为何要用接口
接口提取了一群类共同的函数,可以把接口当做一个函数的集合。
然后让子类去实现接口中的函数。
这么做的意义在于归一化,什么叫归一化,就是只要是基于同一个接口实现的类,那么所有的这些类产生的对象在使用时,从用法上来说都一样。
归一化的好处在于:
1. 归一化让使用者无需关心对象的类是什么,只需要的知道这些对象都具备某些功能就可以了,这极大地降低了使用者的使用难度。
2. 归一化使得高层的外部使用者可以不加区分的处理所有接口兼容的对象集合
2.1:就好象linux的泛文件概念一样,所有东西都可以当文件处理,不必关心它是内存、磁盘、网络还是屏幕(当然,对底层设计者,当然也可以区分出“字符设备”和“块设备”,然后做出针对性的设计:细致到什么程度,视需求而定)。
2.2:再比如:我们有一个汽车接口,里面定义了汽车所有的功能,然后由本田汽车的类,奥迪汽车的类,大众汽车的类,他们都实现了汽车接口,这样就好办了,大家只需要学会了怎么开汽车,那么无论是本田,还是奥迪,还是大众我们都会开了,开的时候根本无需关心我开的是哪一类车,操作手法(函数调用)都一样
3. 模仿interface
在python中根本就没有一个叫做interface的关键字,如果非要去模仿接口的概念
可以借助第三方模块:
http://pypi.python.org/pypi/zope.interface
twisted的twistedinternetinterface.py里使用zope.interface
文档https://zopeinterface.readthedocs.io/en/latest/
设计模式:https://github.com/faif/python-patterns
也可以使用继承:
继承的两种用途
一:继承基类的方法,并且做出自己的改变或者扩展(代码重用):实践中,继承的这种用途意义并不很大,甚至常常是有害的。因为它使得子类与基类出现强耦合。
二:声明某个子类兼容于某基类,定义一个接口类(模仿java的Interface),接口类中定义了一些接口名(就是函数名)且并未实现接口的功能,子类继承接口类,并且实现接口中的功能
class Interface:#定义接口Interface类来模仿接口的概念,python中压根就没有interface关键字来定义一个接口。 def read(self): #定接口函数read pass def write(self): #定义接口函数write pass class Txt(Interface): #文本,具体实现read和write def read(self): print('文本数据的读取方法') def write(self): print('文本数据的读取方法') class Sata(Interface): #磁盘,具体实现read和write def read(self): print('硬盘数据的读取方法') def write(self): print('硬盘数据的读取方法') class Process(Interface): def read(self): print('进程数据的读取方法') def write(self): print('进程数据的读取方法')
上面的代码只是看起来像接口,其实并没有起到接口的作用,子类完全可以不用去实现接口 ,这就用到了抽象类
7 抽象类
1 什么是抽象类
与java一样,python也有抽象类的概念但是同样需要借助模块实现,抽象类是一个特殊的类,它的特殊之处在于只能被继承,不能被实例化
2 为什么要有抽象类
如果说类是从一堆对象中抽取相同的内容而来的,那么抽象类就是从一堆类中抽取相同的内容而来的,内容包括数据属性和函数属性。
比如我们有香蕉的类,有苹果的类,有桃子的类,从这些类抽取相同的内容就是水果这个抽象的类,你吃水果时,要么是吃一个具体的香蕉,要么是吃一个具体的桃子。。。。。。你永远无法吃到一个叫做水果的东西。
从设计角度去看,如果类是从现实对象抽象而来的,那么抽象类就是基于类抽象而来的。
从实现角度来看,抽象类与普通类的不同之处在于:抽象类中只能有抽象方法(没有实现功能),该类不能被实例化,只能被继承,且子类必须实现抽象方法。这一点与接口有点类似,但其实是不同的,即将揭晓答案
3. 在python中实现抽象类
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' #一切皆文件 import abc #利用abc模块实现抽象类 class All_file(metaclass=abc.ABCMeta): all_type='file' @abc.abstractmethod #定义抽象方法,无需实现功能 def read(self): '子类必须定义读功能' pass @abc.abstractmethod #定义抽象方法,无需实现功能 def write(self): '子类必须定义写功能' pass # class Txt(All_file): # pass # # t1=Txt() #报错,子类没有定义抽象方法 class Txt(All_file): #子类继承抽象类,但是必须定义read和write方法 def read(self): print('文本数据的读取方法') def write(self): print('文本数据的读取方法') class Sata(All_file): #子类继承抽象类,但是必须定义read和write方法 def read(self): print('硬盘数据的读取方法') def write(self): print('硬盘数据的读取方法') class Process(All_file): #子类继承抽象类,但是必须定义read和write方法 def read(self): print('进程数据的读取方法') def write(self): print('进程数据的读取方法') wenbenwenjian=Txt() yingpanwenjian=Sata() jinchengwenjian=Process() #这样大家都是被归一化了,也就是一切皆文件的思想 wenbenwenjian.read() yingpanwenjian.write() jinchengwenjian.read() print(wenbenwenjian.all_type) print(yingpanwenjian.all_type) print(jinchengwenjian.all_type)
4. 抽象类与接口
抽象类的本质还是类,指的是一组类的相似性,包括数据属性(如all_type)和函数属性(如read、write),而接口只强调函数属性的相似性。
抽象类是一个介于类和接口直接的一个概念,同时具备类和接口的部分特性,可以用来实现归一化设计
8 继承实现的原理(可恶的菱形问题)
1 继承顺序
在Java和C#中子类只能继承一个父类,而Python中子类可以同时继承多个父类,如A(B,C,D)
如果继承关系为非菱形结构,则会按照先找B这一条分支,然后再找C这一条分支,最后找D这一条分支的顺序直到找到我们想要的属性
如果继承关系为菱形结构,那么属性的查找方式有两种,分别是:深度优先和广度优先
class A(object): def test(self): print('from A') class B(A): def test(self): print('from B') class C(A): def test(self): print('from C') class D(B): def test(self): print('from D') class E(C): def test(self): print('from E') class F(D,E): # def test(self): # print('from F') pass f1=F() f1.test() print(F.__mro__) #只有新式才有这个属性可以查看线性列表,经典类没有这个属性 #新式类继承顺序:F->D->B->E->C->A #经典类继承顺序:F->D->B->A->E->C #python3中统一都是新式类 #pyhon2中才分新式类与经典类 继承顺序
2 继承原理(python如何实现的继承)
python到底是如何实现继承的,对于你定义的每一个类,python会计算出一个方法解析顺序(MRO)列表,这个MRO列表就是一个简单的所有基类的线性顺序列表,例如
>>> F.mro() #等同于F.__mro__ [<class '__main__.F'>, <class '__main__.D'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
为了实现继承,python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。
而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理,它实际上就是合并所有父类的MRO列表并遵循如下三条准则:
1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类
9子类中调用父类的方法
方法一:指名道姓,即父类名.父类方法()
#_*_coding:utf-8_*_ __author__ = 'Linhaifeng' class Vehicle: #定义交通工具类 Country='China' def __init__(self,name,speed,load,power): self.name=name self.speed=speed self.load=load self.power=power def run(self): print('开动啦...') class Subway(Vehicle): #地铁 def __init__(self,name,speed,load,power,line): Vehicle.__init__(self,name,speed,load,power) self.line=line def run(self): print('地铁%s号线欢迎您' %self.line) Vehicle.run(self) line13=Subway('中国地铁','180m/s','1000人/箱','电',13) line13.run()
方法二:super()
class Vehicle: #定义交通工具类 Country='China' def __init__(self,name,speed,load,power): self.name=name self.speed=speed self.load=load self.power=power def run(self): print('开动啦...') class Subway(Vehicle): #地铁 def __init__(self,name,speed,load,power,line): #super(Subway,self) 就相当于实例本身 在python3中super()等同于super(Subway,self) super().__init__(name,speed,load,power) self.line=line def run(self): print('地铁%s号线欢迎您' %self.line) super(Subway,self).run() class Mobike(Vehicle):#摩拜单车 pass line13=Subway('中国地铁','180m/s','1000人/箱','电',13) line13.run()
强调:二者使用哪一种都可以,但最好不要混合使用
了解部分:
即使没有直接继承关系,super仍然会按照mro继续往后查找
#A没有继承B,但是A内super会基于C.mro()继续往后找 class A: def test(self): super().test() class B: def test(self): print('from B') class C(A,B): pass c=C() c.test() #打印结果:from B print(C.mro()) #[<class '__main__.C'>, <class '__main__.A'>, <class '__main__.B'>, <class 'object'>]
指名道姓与super()的区别
#指名道姓 class A: def __init__(self): print('A的构造方法') class B(A): def __init__(self): print('B的构造方法') A.__init__(self) class C(A): def __init__(self): print('C的构造方法') A.__init__(self) class D(B,C): def __init__(self): print('D的构造方法') B.__init__(self) C.__init__(self) pass f1=D() #A.__init__被重复调用 ''' D的构造方法 B的构造方法 A的构造方法 C的构造方法 A的构造方法 ''' #使用super() class A: def __init__(self): print('A的构造方法') class B(A): def __init__(self): print('B的构造方法') super(B,self).__init__() class C(A): def __init__(self): print('C的构造方法') super(C,self).__init__() class D(B,C): def __init__(self): print('D的构造方法') super(D,self).__init__() f1=D() #super()会基于mro列表,往后找 ''' D的构造方法 B的构造方法 C的构造方法 A的构造方法 '''
当你使用super()函数时,Python会在MRO列表上继续搜索下一个类。只要每个重定义的方法统一使用super()并只调用它一次,那么控制流最终会遍历完整个MRO列表,每个方法也只会被调用一次(注意注意注意:使用super调用的所有属性,都是从MRO列表当前的位置往后找,千万不要通过看代码去找继承关系,一定要看MRO列表)
九 多态与多态性
1多态
多态指的是一类事物有多种形态
动物有多种形态:人,狗,猪
import abc class Animal(metaclass=abc.ABCMeta): #同一类事物:动物 @abc.abstractmethod def talk(self): pass class People(Animal): #动物的形态之一:人 def talk(self): print('say hello') class Dog(Animal): #动物的形态之二:狗 def talk(self): print('say wangwang') class Pig(Animal): #动物的形态之三:猪 def talk(self): print('say aoao')
文件有多种形态:文本文件,可执行文件
import abc class File(metaclass=abc.ABCMeta): #同一类事物:文件 @abc.abstractmethod def click(self): pass class Text(File): #文件的形态之一:文本文件 def click(self): print('open file') class ExeFile(File): #文件的形态之二:可执行文件 def click(self): print('execute file')
2多态性
一 什么是多态动态绑定(在继承的背景下使用时,有时也称为多态性)
多态性是指在不考虑实例类型的情况下使用实例
在面向对象方法中一般是这样表述多态性:向不同的对象发送同一条消息(!!!obj.func():是调用了obj的方法func,又称为向obj发送了一条消息func),
不同的对象在接收时会产生不同的行为(即方法)。也就是说,每个对象可以用自己的方式去响应共同的消息。所谓消息,就是调用函数,不同的行为就是指不同的实现,即执行不同的函数。
比如:老师.下课铃响了(),学生.下课铃响了(),老师执行的是下班操作,学生执行的是放学操作,虽然二者消息一样,但是执行的效果不同
多态性分为静态多态性和动态多态性
静态多态性:如任何类型都可以用运算符+进行运算
动态多态性:如下
peo=People() dog=Dog() pig=Pig() #peo、dog、pig都是动物,只要是动物肯定有talk方法 #于是我们可以不用考虑它们三者的具体是什么类型,而直接使用 peo.talk() dog.talk() pig.talk() #更进一步,我们可以定义一个统一的接口来使用 def func(obj): obj.talk()
二 为什么要用多态性(多态性的好处)
其实大家从上面多态性的例子可以看出,我们并没有增加什么新的知识,也就是说python本身就是支持多态性的,这么做的好处是什么呢?
1.增加了程序的灵活性
以不变应万变,不论对象千变万化,使用者都是同一种形式去调用,如func(animal)
2.增加了程序额可扩展性
通过继承animal类创建了一个新的类,使用者无需更改自己的代码,还是用func(animal)去调用
>>> class Cat(Animal): #属于动物的另外一种形态:猫 ... def talk(self): ... print('say miao') ... >>> def func(animal): #对于使用者来说,自己的代码根本无需改动 ... animal.talk() ... >>> cat1=Cat() #实例出一只猫 >>> func(cat1) #甚至连调用方式也无需改变,就能调用猫的talk功能 say miao ''' 这样我们新增了一个形态Cat,由Cat类产生的实例cat1,使用者可以在完全不需要修改自己代码的情况下。使用和人、狗、猪一样的方式调用cat1的talk方法,即func(cat1) '''
三 鸭子类型
逗比时刻:
Python崇尚鸭子类型,即‘如果看起来像、叫声像而且走起路来像鸭子,那么它就是鸭子’
python程序员通常根据这种行为来编写程序。例如,如果想编写现有对象的自定义版本,可以继承该对象
也可以创建一个外观和行为像,但与它无任何关系的全新对象,后者通常用于保存程序组件的松耦合度。
例1:利用标准库中定义的各种‘与文件类似’的对象,尽管这些对象的工作方式像文件,但他们没有继承内置文件对象的方法
#二者都像鸭子,二者看起来都像文件,因而就可以当文件一样去用 class TxtFile: def read(self): pass def write(self): pass class DiskFile: def read(self): pass def write(self): pass
例2:其实大家一直在享受着多态性带来的好处,比如Python的序列类型有多种形态:字符串,列表,元组,多态性体现如下
#str,list,tuple都是序列类型 s=str('hello') l=list([1,2,3]) t=tuple((4,5,6)) #我们可以在不考虑三者类型的前提下使用s,l,t s.__len__() l.__len__() t.__len__() len(s) len(l) len(t)