• python异步编程之asyncio(百万并发)


    前言:python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病。然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板,如最新的微服务框架japronto,resquests per second可达百万级。

     

    python还有一个优势是库(第三方库)极为丰富,运用十分方便。asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。

     

    在学习asyncio之前,我们先来理清楚同步/异步的概念

    ·同步是指完成事务的逻辑,先执行第一个事务,如果阻塞了,会一直等待,直到这个事务完成,再执行第二个事务,顺序执行。。。

    ·异步是和同步相对的,异步是指在处理调用这个事务的之后,不会等待这个事务的处理结果,直接处理第二个事务去了,通过状态、通知、回调来通知调用者处理结果。

     

    一、asyncio

    下面通过举例来对比同步代码和异步代码编写方面的差异,其次看下两者性能上的差距,我们使用sleep(1)模拟耗时1秒的io操作。

     ·同步代码

    import time
    
    def hello():
        time.sleep(1)
    
    def run():
        for i in range(5):
            hello()
            print('Hello World:%s' % time.time())  # 任何伟大的代码都是从Hello World 开始的!
    if __name__ == '__main__':
        run()

    输出:(间隔约是1s)

    Hello World:1527595175.4728756
    Hello World:1527595176.473001
    Hello World:1527595177.473494
    Hello World:1527595178.4739306
    Hello World:1527595179.474482

     ·异步代码

    import time
    import asyncio
    
    # 定义异步函数
    async def hello():
        asyncio.sleep(1)
        print('Hello World:%s' % time.time())
    
    def run():
        for i in range(5):
            loop.run_until_complete(hello())
    
    loop = asyncio.get_event_loop()
    if __name__ =='__main__':
        run()

     输出:

    Hello World:1527595104.8338501
    Hello World:1527595104.8338501
    Hello World:1527595104.8338501
    Hello World:1527595104.8338501
    Hello World:1527595104.8338501
    async def 用来定义异步函数,其内部有异步操作。每个线程有一个事件循环,主线程调用asyncio.get_event_loop()时会创建事件循环,你需要把异步的任务丢给这个循环的run_until_complete()方法,事件循环会安排协同程序的执行。
     

    二、aiohttp

      如果需要并发http请求怎么办呢,通常是用requests,但requests是同步的库,如果想异步的话需要引入aiohttp。这里引入一个类,from aiohttp import ClientSession,首先要建立一个session对象,然后用session对象去打开网页。session可以进行多项操作,比如post, get, put, head等。

    基本用法:

    async with ClientSession() as session:
        async with session.get(url) as response:

     

    aiohttp异步实现的例子:

    import asyncio
    from aiohttp import ClientSession
    
    
    tasks = []
    url = "https://www.baidu.com/{}"
    async def hello(url):
        async with ClientSession() as session:
            async with session.get(url) as response:
                response = await response.read()
                print(response)
    
    if __name__ == '__main__':
        loop = asyncio.get_event_loop()
        loop.run_until_complete(hello(url))

     

    首先async def 关键字定义了这是个异步函数,await 关键字加在需要等待的操作前面,response.read()等待request响应,是个耗IO操作。然后使用ClientSession类发起http请求。

     

    多链接异步访问

    如果我们需要请求多个URL该怎么办呢,同步的做法访问多个URL只需要加个for循环就可以了。但异步的实现方式并没那么容易,在之前的基础上需要将hello()包装在asyncio的Future对象中,然后将Future对象列表作为任务传递给事件循环

    import time
    import asyncio
    from aiohttp import ClientSession
    
    tasks = []
    url = "https://www.baidu.com/{}"
    async def hello(url):
        async with ClientSession() as session:
            async with session.get(url) as response:
                response = await response.read()
    #            print(response)
                print('Hello World:%s' % time.time())
    
    def run():
        for i in range(5):
            task = asyncio.ensure_future(hello(url.format(i)))
            tasks.append(task)
    
    
    if __name__ == '__main__':
        loop = asyncio.get_event_loop()
        run()
        loop.run_until_complete(asyncio.wait(tasks))

     输出:

    Hello World:1527754874.8915546
    Hello World:1527754874.899039
    Hello World:1527754874.90004
    Hello World:1527754874.9095392
    Hello World:1527754874.9190395

     收集http响应

    好了,上面介绍了访问不同链接的异步实现方式,但是我们只是发出了请求,如果要把响应一一收集到一个列表中,最后保存到本地或者打印出来要怎么实现呢,可通过asyncio.gather(*tasks)将响应全部收集起来,具体通过下面实例来演示。

    import time
    import asyncio
    from aiohttp import ClientSession
    
    tasks = []
    url = "https://www.baidu.com/{}"
    async def hello(url):
        async with ClientSession() as session:
            async with session.get(url) as response:
    #            print(response)
                print('Hello World:%s' % time.time())
                return await response.read()
    
    def run():
        for i in range(5):
            task = asyncio.ensure_future(hello(url.format(i)))
            tasks.append(task)
        result = loop.run_until_complete(asyncio.gather(*tasks))
        print(result)
    
    if __name__ == '__main__':
        loop = asyncio.get_event_loop()
        run()

     输出:

    Hello World:1527765369.0785167
    Hello World:1527765369.0845182
    Hello World:1527765369.0910277
    Hello World:1527765369.0920424
    Hello World:1527765369.097017
    [b'<!DOCTYPE html>
    <!--STATUS OK-->
    <html>
    <head>
    ......

    异常解决

    假如你的并发达到2000个,程序会报错:ValueError: too many file descriptors in select()。报错的原因字面上看是 Python 调取的 select 对打开的文件有最大数量的限制,这个其实是操作系统的限制,linux打开文件的最大数默认是1024,windows默认是509,超过了这个值,程序就开始报错。这里我们有三种方法解决这个问题:

    1.限制并发数量。(一次不要塞那么多任务,或者限制最大并发数量)

    2.使用回调的方式

    3.修改操作系统打开文件数的最大限制,在系统里有个配置文件可以修改默认值,具体步骤不再说明了。

    不修改系统默认配置的话,个人推荐限制并发数的方法,设置并发数为500,处理速度更快。

    #coding:utf-8
    import time,asyncio,aiohttp
    
    
    url = 'https://www.baidu.com/'
    async def hello(url,semaphore):
        async with semaphore:
            async with aiohttp.ClientSession() as session:
                async with session.get(url) as response:
                    return await response.read()
    
    
    async def run():
        semaphore = asyncio.Semaphore(500) # 限制并发量为500
        to_get = [hello(url.format(),semaphore) for _ in range(1000)] #总共1000任务
        await asyncio.wait(to_get)
    
    
    if __name__ == '__main__':
    #    now=lambda :time.time()
        loop = asyncio.get_event_loop()
        loop.run_until_complete(run())
        loop.close()

     

  • 相关阅读:
    Floyd判圈算法 Floyd Cycle Detection Algorithm
    最优化问题 Optimization Problems & 动态规划 Dynamic Programming
    自平衡二叉搜索树
    树 & 二叉树
    数根
    二叉搜索树BST
    K-Means & Sequential Leader Clustering
    KMP算法
    递归问题的时间复杂度分析
    人工神经网络 Artificial Neural Network
  • 原文地址:https://www.cnblogs.com/caodneg7/p/13277708.html
Copyright © 2020-2023  润新知