• tensorflow 计算图模型的保存和恢复


    定义计算图并计算,保存其中的变量 。保存.ipynb

    import tensorflow as tf
    tf.reset_default_graph()
    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
    v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)
    
    inc_v1 = v1.assign(v1+1)
    dec_v2 = v2.assign(v2-1)
    
    # Add an op to initialize the variables.
    init_op = tf.global_variables_initializer()
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, initialize the variables, do some work, and save the
    # variables to disk.
    with tf.Session() as sess:
      sess.run(init_op)
      # Do some work with the model.
      inc_v1.op.run()
      dec_v2.op.run()
      # Save the variables to disk.
      save_path = saver.save(sess, "./ckpt_test/model.ckpt")
      print("Model saved in path: %s" % save_path)

    创建相同的图结构,图中的节点变量可以由已经保存的模型文件中的内容恢复处理,注意 首先要图进行清空(感觉tf公用了变量空间,所以如果没有清空会导致变量内容名称不一致)恢复.ipynb

    import tensorflow as tf
    tf.reset_default_graph()
    
    # Create some variables.
    v1 = tf.get_variable("v1", shape=[3])
    v2 = tf.get_variable("v2", shape=[5])
    
    # Add ops to save and restore all the variables.
    saver = tf.train.Saver()
    
    # Later, launch the model, use the saver to restore variables from disk, and
    # do some work with the model.
    with tf.Session() as sess:
      # Restore variables from disk.
      saver.restore(sess, "./ckpt_test/model.ckpt")
      print("Model restored.")
      # Check the values of the variables
      print("v1 : %s" % v1.eval())
      print("v2 : %s" % v2.eval())

    所以最好在保存和恢复的文件中都先对图清空。

  • 相关阅读:
    g_pLog
    win-socket
    时间转字符串 各种格式
    linux自启动脚本.sh
    openssl之aes对称加密
    openssl生成密钥/证书
    win10下安装openssl
    GUI的最终选择 Tkinter(二):Label和Button组件
    GUI的最终选择 Tkinter(一):Tkinter最初体验
    练习十三:水仙花数,用for循环实现
  • 原文地址:https://www.cnblogs.com/candyYang/p/11807068.html
Copyright © 2020-2023  润新知