CF Round250 E. The Child and Binary Tree
题意:n种权值集合C, 求点权值和为1...m的二叉树的个数, 形态不同的二叉树不同。
也就是说:不带标号,孩子有序
(n,m le 10^5)
sro vfk picks orz
和卡特兰数很像啊,(f_i)权值为i的方案数,递推式
[f[i] = sum_{iin C} sum_{j=0}^{m-i}f[j]f[n-i-j]
]
用OGF表示他
[C(x)=sum_{iin C}x^i
]
表示一个点的生成函数;
[F(x) = sum_{i=0}^m f_i x^i
]
表示二叉树的生成函数。
根据生成函数乘法的定义,
[F(x) = F^2(x) C(x) + 1
]
其中1是因为空子树。
二次函数化简+分子有理化后得到
[F(x) = frac{2}{1 pm sqrt{1 - 4C(x) }}
]
正负号怎么取?
(F(0) = f_0 = 1),所以只能取+号
然后多项式开根+多项式求逆就行啦!
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = (1<<18) + 5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int P = 998244353, g = 3, inv2 = (P+1)/2;
inline int Pow(ll a, int b) {
ll ans = 1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
namespace ntt {
int maxlen = 1<<18, rev[N];
ll omega[N], omegaInv[N];
void dft(int *a, int n, int flag) {
for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int l=2; l<=n; l<<=1) {
int m = l>>1;
ll wn = Pow(g, flag==1 ? (P-1)/l : P-1-(P-1)/l);
for(int *p = a; p != a+n; p += l) {
ll w = 1;
for(int k=0; k<m; k++) {
int t = w * p[k+m] %P;
p[k+m] = (p[k] - t + P) %P;
p[k] = (p[k] + t) %P;
w = w * wn %P;
}
}
}
if(flag == -1) {
ll inv = Pow(n, P-2);
for(int i=0; i<n; i++) a[i] = a[i] * inv %P;
}
}
int t[N];
void inverse(int *a, int *b, int l) {
if(l == 1) {b[0] = Pow(a[0], P-2); return;}
inverse(a, b, l>>1);
int n = 1, k = 0; while(n < l<<1) n <<= 1, k++;
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
dft(t, n, 1); dft(b, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) b[i] * (2 - (ll) t[i] * b[i] %P + P) %P;
dft(b, n, -1);
for(int i=l; i<n; i++) b[i] = 0;
}
int ib[N];
void square_root(int *a, int *b, int l) {
if(l == 1) {b[0] = 1; return;}
square_root(a, b, l>>1);
int n = 1, k = 0; while(n < l<<1) n <<= 1, k++;
for(int i=0; i<n; i++) ib[i] = 0;
inverse(b, ib, l);
for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));
for(int i=0; i<l; i++) t[i] = a[i]; for(int i=l; i<n; i++) t[i] = 0;
dft(t, n, 1); dft(b, n, 1); dft(ib, n, 1);
for(int i=0; i<n; i++) b[i] = (ll) inv2 * (b[i] + (ll) t[i] * ib[i] %P) %P;
dft(b, n, -1);
for(int i=l; i<n; i++) b[i] = 0;
}
}
int n, m, c[N], a[N], f[N];
int main() {
freopen("in", "r", stdin);
n=read(); m=read()+1;
c[0] = 1;
for(int i=1; i<=n; i++) c[read()] -= 4;
for(int i=0; i<m; i++) if(c[i] < 0) c[i] += P;
int len = 1; while(len < m) len <<= 1;
ntt::square_root(c, a, len);
a[0]++; if(a[0]>=P) a[0]-=P;
ntt::inverse(a, f, len);
for(int i=1; i<m; i++) printf("%d
", f[i] * 2 %P);
}