DNA Sequence
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 15797 | Accepted: 6095 |
Description
It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DNA Sequence,For example, if a animal's DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don't contain those segments.
Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n.
Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n.
Input
First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences.
Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10.
Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10.
Output
An integer, the number of DNA sequences, mod 100000.
Sample Input
4 3 AT AC AG AA
Sample Output
36
Source
题意:和那些一样:
给出p个模式串,求有多少个长度为m的字符串,其中不包含任何一个模式串为子串
一看n辣么大当然要矩阵乘法掉啦
然后观察这个套路DP方程 f[i+1][p]=sigma{f[i][j]:j能转移到p}
满足矩阵乘法的要求嘛,建矩阵就行了
如果把AC自动机当作有向图,就成了经典的图的路径方案数问题了啊
答案最后还要统计0到0的方案数哦,因为那些没有的都是0到0啦
PS:我能把这个模数写错真是绝了
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int N=105,MOD=100000; int m,n,mp[300]; char s[15]; struct node{ int ch[5],val,fail; }t[N]; int sz; void ins(char s[]){ //printf("ins "); int u=0,n=strlen(s+1); for(int i=1;i<=n;i++){ int c=mp[s[i]]; if(!t[u].ch[c]) t[u].ch[c]=++sz; u=t[u].ch[c]; } t[u].val=1; } int q[N],head,tail; void getAC(){ head=tail=1; for(int i=1;i<=4;i++) if(t[0].ch[i]) q[tail++]=t[0].ch[i]; while(head!=tail){ int u=q[head++]; t[u].val|=t[t[u].fail].val; for(int i=1;i<=4;i++){ int &v=t[u].ch[i]; if(!v) v=t[t[u].fail].ch[i]; else{ t[v].fail=t[t[u].fail].ch[i]; q[tail++]=v; } } } } struct Matrix{ ll z[N][N]; Matrix(){memset(z,0,sizeof(z));} void ini(){for(int i=0;i<=sz;i++) z[i][i]=1;} void print(){ puts(""); for(int i=0;i<=sz;i++) for(int j=0;j<=sz;j++) printf("%lld%c",z[i][j],j==n?' ':' '); puts(""); } }G; Matrix operator *(Matrix A,Matrix B){ Matrix C; for(int k=0;k<=sz;k++) for(int i=0;i<=sz;i++) if(A.z[i][k]) for(int j=0;j<=sz;j++) if(B.z[k][j]) C.z[i][j]=(C.z[i][j]+A.z[i][k]*B.z[k][j])%MOD; return C; } Matrix operator ^(Matrix A,int b){ Matrix re;re.ini(); for(;b;b>>=1,A=A*A) if(b&1) re=re*A; return re; } void build(){ for(int i=0;i<=sz;i++) if(!t[i].val){//printf("hi %d ",i); for(int k=1;k<=4;k++) if(!t[t[i].ch[k]].val) G.z[i][t[i].ch[k]]++;//,printf("k %d %d ",k,t[i].ch[k]); } } int ans; int main(){ freopen("in","r",stdin); mp['A']=1;mp['T']=2;mp['C']=3;mp['G']=4; scanf("%d%d",&m,&n); for(int i=1;i<=m;i++) scanf("%s",s+1),ins(s); getAC(); build();//G.print(); G=G^n; for(int i=0;i<=sz;i++) ans=(ans+G.z[0][i])%MOD; printf("%d",ans); }