• HDU2767Proving Equivalences[强连通分量 缩点]


    Proving Equivalences

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 6006    Accepted Submission(s): 2051


    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0.

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2 4 0 3 2 1 2 1 3
     
    Sample Output
    4 2
     
    Source

    和上题一样
    PS:再次N写错
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    const int N=2e4+5,M=5e4+5;
    typedef long long ll;
    inline int read(){
        char c=getchar();int x=0,f=1;
        while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
        while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
        return x*f;
    }
    int n,m,u,v;
    struct edge{
        int v,ne;
    }e[M];
    int h[N],cnt=0;
    inline void ins(int u,int v){
        cnt++;
        e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
    }
    int dfn[N],low[N],belong[N],dfc,scc;
    int st[N],top=0;
    void dfs(int u){
        dfn[u]=low[u]=++dfc;
        st[++top]=u;
        for(int i=h[u];i;i=e[i].ne){
            int v=e[i].v;
            if(!dfn[v]){
                dfs(v);
                low[u]=min(low[u],low[v]);
            }else if(!belong[v])
                low[u]=min(low[u],dfn[v]);
        }
        if(low[u]==dfn[u]){
            scc++;
            while(true){
                int x=st[top--];
                belong[x]=scc;
                if(x==u) break;
            }
        }
    }
    void findSCC(){
        memset(dfn,0,sizeof(dfn));
        memset(belong,0,sizeof(belong));
        memset(low,0,sizeof(low));
        dfc=scc=top=0;
        for(int i=1;i<=n;i++) if(!dfn[i]) dfs(i);
    }
    int outd[N],ind[N];
    void point(){
        memset(ind,0,sizeof(ind));
        memset(outd,0,sizeof(outd));
        for(int u=1;u<=n;u++)
            for(int i=h[u];i;i=e[i].ne){
                int v=e[i].v;
                if(belong[u]!=belong[v]) outd[belong[u]]++,ind[belong[v]]++;
            }
    }
    int T;
    int main(){
        T=read();
        while(T--){
            n=read();m=read();
            cnt=0;
            memset(h,0,sizeof(h));
            for(int i=1;i<=m;i++){u=read();v=read();ins(u,v);}
            findSCC();
            point();
            int cnt1=0,cnt2=0;
            for(int i=1;i<=scc;i++){
                if(ind[i]==0) cnt1++;
                if(outd[i]==0) cnt2++;
            }
            if(scc==1) printf("0
    ");
            else printf("%d
    ",max(cnt1,cnt2));
        }
    }
     
  • 相关阅读:
    ViewPager 滑动页(一)
    Fragment中Button的android:onClick 无法监听相应
    Button的四种Click响应方法
    环形图 自定义(一)
    Progress 自定义(一)-shape
    Button 自定义(一)-shape
    客户机页表遍历
    KVM的ept机制
    linux内核源码中两个重要的宏
    总结
  • 原文地址:https://www.cnblogs.com/candy99/p/5989125.html
Copyright © 2020-2023  润新知